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Network perspective on life systems
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Partial food web: North American grassland and forest
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*Red foxes (Vulpes vulpes) and black bears (Ursus americanus) are omnivores, and thus they are very often ‘ 4= Indicates direction of energy flow |
considered to be secondary consumers. However, in this fo0d web they function as tertary consumers.
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Microbial co-occurrence network




Network perspective on life systems
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A holistic network approach is essential for analyzing ecosystem dynamics




Three-guild herbivore-plant-pollinator network
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Manduca sexta:
pollinator and larval Archilocus alexandri:
herbivore pollinator

Hyles lineata: pollinator

» Mutualistic and antagonistic interactions can regulate biomass balance within the network and maintain

ecosystem stability.
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Adaptive rewiring
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Adaptive rewiring helps species enhance the efficiency of resource utilization




Adaptive rewiring enhances the nestedness
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» Nestedness enhances network stability by ensuring Nestedness (BREM): the interactions of specialized
species persistence through remaining interactions, units are always encompassed within generalized

even when some species are eliminated. units ;



Adaptive rewiring enhances the modularity
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» Highly modularity enhance system stability by limiting local Modularity (1&3k{k): Species within the network can be

disturbance propagation through autonomous functional units. partitioned into distinct modules or subgroups, where
intra-modular connections exhibit dense linkage patterns

while inter-modular interactions remain relatively sparse.



Network construction from adaptive niche-based interactions

Step1: Network initialization
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Fixed parameters

Species numbers;
Niche breadth;
Species' intrinsic growth rates;

Background interaction strengths;

Random parameters

. Niche distribution;

Initial interactions;

Biomass;



Network construction from adaptive niche-based interactions

Step2: Adaptive interaction rewiring

Lotka-Volterra model governing the

SFhirddterationn dynamics of the 3-guild network
% = Biomass x (Intrinsic growth — Competition + Mutualistic)
(EH) I Mutualistic it 9 P
interaction
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(EH) Antagonistic
R interaction dH.
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Herbivores ’

RESW)

> In each iteration, a random interaction is changed with the probability p; = 1 — @-!, where g represents
the number of partners a plant has in the same guild as the selected animal species;

» Interactions are more likely to be lost by species that interact with many other species;

> After reestablishing interactions, species’ biomass is updated.




Network construction from adaptive niche-based interactions

Step3: Reaching dynamic equilibrium

Lotka-Volterra model governing the

18 dynamics of the 3-guild network
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> Biomass is used to determine if the three-guild network is stable;

» But no specific criteria for this judgment are provided;



The structure of network after rewiring iteration
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Stability response to interaction strengths

> Resilience: The capacity of ecological networks to regain
equilibrium following minor perturbations, reflecting system
stability when facing perturbations such as species extinction

and environmental changes.

Lotka-Volterra model governing the
dynamics of the 3-guild network
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Stability response to interaction strengths
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Relative resilience of adaptive networks

Competition (Q,):

» Changes in competition have a relatively small impact on
network resilience;

» However, under different levels of competition intensity,
alterations in the other two types of interactions (mutualism

and antagonism) can significantly affect network resilience.

Antagonism (Q,):

» An increase in antagonism reduces network resilience.



Stability response to interaction strengths

Mutualism (Q,,):

» Under low competition intensity, increased mutualistic

strength enhanced resilience of network;
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Stability response to interaction strengths
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Mutualism (Q,,):
» Under low competition intensity, increased mutualistic

strength enhanced resilience of netwirk;

» Under moderate-to-high competition intensity, elevated

mutualistic interaction strength reduce the network's resilience
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The balance of multiple interactions can exert selective forces that go beyond the direct

additivity of different interactions




Response of nestedness to interaction strengths
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Low competition strength:

» Increasing mutualism strength enhances
network nestedness;
» Increasing antagonistic strength reduces

network nestedness.

High competition strength:

» Higher competition strength increases
network nestedness;
» Elevated mutualism strength reduces

nestedness.



Response of modularity to interaction strengths

Modularity increasing
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Low competition strength:

» Under low antagonistic strength, modu-
larity remains stable;
» Under high antagonistic strength, low

mutualistic strength reduces modularity;

High competition strength:

» Increased competition strength does not
affect overall modularity;
» Increased mutualistic and antagonistic

strengths decrease modularity.



Conclusions & Adavantages

e This study simulated the adaptive rewiring process in a three-guild herbivore-plant-pollinator

network through modeling;

e Adaptive rewiring drives the evolution of sub-network structures, with the nestedness and

modularity significantly increased;
e Network stability is governed by the dynamic balance of interaction strengths:

v The optimal ratio of mutualism (Q 1) to competition (Qc|) determining system resilience;
v The link between structural complexity (nestedness/modularity) and stability requires multidimensional

analysis.
e Theoretical innovations offer insights for empirical research:

v Highlight the necessity of integrating adaptive behaviors and interaction strength dynamics in

understanding ecological network persistence.



Problems

® Over-simplification of ecological mechanisms
v' The study assumes symmetrical niche distribution, such as equal network size and connectance, and simplifies species
interaction rules, like competition strength and resource allocation patterns. This may cause the model to fail to capture

non-linear dynamics in real ecosystems.

® Limitations in combining theory with empirical evidence
v Although the model shows that network structure and stability are regulated by the intensity balance of multiple types of
interactions, it does not compare results with field observations or experimental data, such as actual food web

structures and community stability thresholds.

® Insufficient breadth and depth in discussion
v There is not enough comparison with similar studies, like multi-trophic level network models and mutualism-antagonism
trade-off theories, and the application potential of the conclusions under climate change or human disturbance is not

discussed.



Prospects

+ Extinct species O Extant species
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» Left: the percentages of species per community that follow each of the two hypotheses (niche 1

shifting or niche expansion). . .
Environment adaption
» Right: the position of each endemic species according to its distinctiveness or distance to

centroid values, compared to the values of their ancestor.

Species tend to develop divergent trait values rather

than converge toward intermediate traits
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