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Backgrounds about PPI



PPl network consists of protein-protein interaction

Signal transduction Immune response

Cell cycle control
Gene regulation

Metabolic pathways

Protein folding and degradation

More than 80% of proteins need to interact with others



PPl-networks are scale-free

A few nodes with many connections, while most nodes have only a few connections. Like breast cancer related PPl network
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Minkyu Kim et al., A protein interaction landscape of breast cancer.Science374,eabf3066(2021).



Different species, Different networks
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Proteome of different species are quite different PPl network comparison

Qian Ba et al., Proteotype coevolution and quantitative diversity across 11 mammalian species. Sci. Adv.(2022).
Daehong Kwon et al., INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species, Nucleic Acids Research.(2018).



PPl-network evolution:
Are PPl networks becoming more resilient during evolution?
How does the network structure change?
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1. Modeling Resilience of the Interactome - CETTERS
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How to measure the resilience of a network?
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How to measure the resilience of a network?

o)

>

Given a species s, whose network has N nodes



How to measure the resilience of a network?
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Given a species s, whose network has N nodes
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How to measure the resilience of a network?
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1. 1 Modeling Resilience of the Interactome
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Interactome resilience

1.2 Resilience of Interactomes Throughout Evolution
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“Given a species s, its evolution ts is calculated as the total
branch length (i.e., nucleotide substitutions per site) from the
root of the tree to the leaf representing species s.”



1.2 Resilience of Interactomes Throughout Evolution
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1.2 Resilience of Interactomes Throughout Evolution
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1.3 Resilience of Interactomes depend highly on essential

proteins
LILILICS 4

. _ | Node removal strategy Randem Guided removal / add :

Species Reference #essential Random Essential  p value i
- ~— Some nodes are more Important

S. cerevisiae Cherry et al. (79), Giaver et al. (81) 1,110 0.471 0.132 < 1-10"
H. sapiens Luo et al. (82), Wang et al. (83), Hart et al. (84) 8,256 0.461 0102 <1-1074
M. musculus Luo et al. (82), Dickinson et al. (85) 2,443 0447 0.156 <1-10*
D. melanogaster Luo et al. (82) 339 0424 0169 <1-107*
C. elegans Luo et al. (82), Kamath er al. (86) 294 0.421 0214 <1-1074
A. thaliana Luo et al. (82), Meinke et al. (87) 356 0430 0.187 <1-107*

a S. cerevisiae b E. coli c H. sapiens
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communications biology
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evolvability of protein-protein interaction networks
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Fig. 4 Prospective resilience of three ribosomal networks. As more nodes are added (horizontal axes), the resilience of the resulting network changes
(vertical axes). The color of each curve corresponds to the number of new links that each new node enters the network with, and the line style

(solid, dashed, or dotted) corresponds to the three different node attachment mechanisms. a Prospective resilience of S. cerevisiae ribosomal network.
b Prospective resilience of E. coli ribosomal network. € Prospective resilience of H. sapiens ribosomal network. Ribbons around each curve correspond to
their 95% confidence intervals.
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1.4 Relationship Between Resilience and Ecology

B
R?=0.32 @ 600 1R?2=0.24 & So@en®
p<7-10* p<2-10%
50.0
Ralstonia Propionibacterium @
solanacearum ® 40.0 Jacnes |
Thermotogate @

Buchnera
aphidicola

maritima
L% o d'
~

Co-habitation index
8
o
[ SO 1o T O O O Y [ N T OO o O o o L O O IO (o 1 |

=0T B D T Rl 13 e
025 030 035 040
Interactome resilience

| i1 O O CL O O O |
025 030 035 040
Interactome resilience

C 0.10
4 R2=0.09 ® LR S
3 Jdp<4-102
E 0.08 %
q’ -
Q - Streptococcus @ @
§ 0.06 —| pneumoniae .
5 - * | e
= s ;
© 0.04 -Listeria " @ @
g innocud® L 1Y
5 1
2 0.02
c
51T S
0.00 L N B

030 033 036 039 042
Interactome resilience

Interactome resilience

0.40

0.38

0.36

0.34

0.32

0.30

Y N Y Y A v |

Ecological habitat

——

*ASH

p=001

p=0.03

1

*ASH

i
I

*TMH

Oxygen requirement

p=8-10*

p=3-10°
I
“T™ I
l
*TMA

T
l

T
D

Terrestrial Multiple Agquatic Specialized Host cell Aerobic Facultative Anaerobic

[ ———— .

Complexity of bacterial lifestyle

Oxygen dependence

*T = Significant difference from Terrestrial (p < 0.05)

More regulatory genes (A), more cohabitation (B), wider range (C), more complex lifestyle (D)

More resilient



PPl-network evolution:
Are PPl networks becoming more resilient during evolution?
How does the network structure change?
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2.1 Structural Changes of Protein Network Neighborhoods

a Isolated components of a protein network neighborhood
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2.1 Structural Changes of Protein Network Neighborhoods
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2.2 Network Rewiring of Protein—Protein Interactions
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Summary
1. Species that have undergone more genetic changes tend to have more resilient

interactomes.

2. This resilience is positively correlated with the complexity of their ecological environments.

3. PPl network structure changed through gradual rewiring and became more efficient and

compact.



Comments

1. Unbalanced data may be a problem.

2. The calculated resilience is a little bit far from the “resilience” in reality. Are there more
biological metrics available to use to describe the possible changes of a network? “evolution of
networks” seems still a topic for physicist instead of biologist.

3. They treat proteins in different species as if they were the same( it’s inevitable when you try
to compare the networks ). But is it possible to take more detailed information (eg. Mutations)
into account? Additionally, the weight or importance of different edges can also be considered

in the analysis.



PPl-data are extremely unbalanced

Organism Experiment Type Raw Interactions
Homo sapiens PHYSICAL 1,293,309
Mus musculus PHYSICAL 100,464
Rattus norvegicus PHYSICAL 10,590
Bos taurus PHYSICAL 653
Canis familiaris PHYSICAL 558
Oryctolagus cuniculus PHYSICAL 385
Macaca mulatta PHYSICAL 316
Sus scrofa PHYSICAL 118
Cricetulus griseus PHYSICAL 67
Chlorocebus sabaeus PHYSICAL 60
Pan troglodytes PHYSICAL 49
Cavia porcellus PHYSICAL 10
Equus caballus PHYSICAL -
P PHYSICAL 4
Ovis aries PHYSICAL 1
Myotis lucifugus PHYSICAL 1
Felis Catus PHYSICAL 5
All mammals PHYSICAL 1,406,594
All Organisms PHYSICAL 1,886,614
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