New Genes and Functional Innovation

Zijian Huang 2025-04-25

When I think about the Topic...

Q1: How does expression of new genes change during the development?

Q2: Are these gene show specific spatial pattern?

Q3: Do they really cause a phenotype innovation during the development?

Article Information

Chaogu Zheng, Ph.D. Hong Kong University

Article

Young duplicate genes show developmental stageand cell type-specific expression and function in *Caenorhabditis elegans*

Fuqiang Ma,1 Chun Yin Lau,1 and Chaogu Zheng1,2,*

¹School of Biological Sciences, The University of Hong Kong, Hong Kong, China

*Correspondence: cgzheng@hku.hk

https://doi.org/10.1016/j.xgen.2023.100467

²Lead contact

Definition of newly duplicated genes

Nematode (线虫)
Caenorhabditis elegans (秀丽隐杆线虫)

Comparison of recently duplicated genes and old genes

Newly duplicated genes show lower but more time-specific expression dynamics.

Recently duplicated genes can be divided into 3 clusters

3 clusters respectively reach peak expression at 70 mpfc(min post first cleavage), 440mpfc and L4 stage.

Function and essentiality of recently duplicated genes

Function

- Cluster1: maternal-to-zygotic transition
- Cluster2: gene expression
- Cluster3: spermatogenesis and immunity

Essentiality

- RNAi for knockdown
- Allele for knockout

- Young genes show low essentiality
- Cluster1 genes have relatively high essentiality

Gene expression spatial comparison

 Cluster1 gene show highest expression in AB lineage, 16-cell stage, while the expression of Cluster1 in germline cells is the lowest.

Gene expression spatial comparison

Male vs. hermaphrodites

 Cluster2 and Cluster3 genes are enriched in <u>specific cell types</u> at the single-cell level Recently duplicate gene, especially Cluster3 gene show male-biased expression, which supports out-of-testis theory

Expression of young duplicate genes is highly restricted among differentiated cell types

Cell type specific genes are more likely to gain or loss

Young duplicate genes are subjected to weak purifying selection and show rapid evolution signal

Weak purifying selection

Positive selection

- > Older
 - higher expression
 - with purifying selection
- Younger
 - relaxed (weak purifying selection) or positive selection

Summary

Q1: How does expression of new genes change during the development?

A1: In *C. elegans* new genes can be divided into 3 clusters by specific expression dynamics. Three different clusters respectively express in early-embryos, mid-embryos and late larvae stage.

Q2: Are these gene show specific spatial pattern?

A1: 3 clusters showed specific spatial pattern in different developmental stages. Cluster 1 does no express in germline while cluster 3 highly expresses in germline. And cluster 3 also enriched in immunity organ.

Q3: Do they really cause a phenotype innovation during the development?

A1: This paper still not directly prove the causal relationship between new genes and phenotype innovation. But it shows some relation between new genes and innate immunity.

Limitations of the study

- 1. lacks experimental data to support his opinion, only data analysis
- 2. only consider newly duplicated genes

This paper give us a new method to explore the function of new gene

- 1. Identifying new gene, not only recently duplicated genes, but all kinds of new genes
- 2. Using spatial transcription or single cell transcription at different developmental stage
- 3. Tracing the new gene expression, especially with the known new structure in the species.

Thanks for your attention!

Zijian Huang 2025-04-25