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Why do | want to share this article? Why do they chose these primates?
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- Gorillas as a third great apes species - Two phylogenetically diverse monkey species
- Infer which differences between humans and - Identify the cellular specializations that humans share
chimpanzees are newly evolved in humans with other great apes

- Contribute to our enhanced cognitive abilities
Scientific questions:

What are the molecular and cellular mechanisms underlying the distinctive cognitive abilities of
humans compared to other primates?



Background
Anatomical differences change in the molecular programs of cortical neurons and

non-neuronal cells

v-’\—\ Dorsal information stream processes
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Raslau et al., 2014, American Journal of Neuroradiology

Anatomical differences: MTG Functions:

O MTG is larger in human O Integrates multimodal sensory information
O More connected to language-associated cortical areas O Critical for visual and auditory language comprehension



Background

Profiled more than 570,000 single nuclei from MTG
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- Using RNA sequencing from the MTG
- Layer dissections for laminar distribution study
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. Cv3 layer 5 only dissected . E

- Transcriptomic profiling of more than 570,000 nuclei
- Microdissected layer 5 to capture rare excitatory neuron



Parts 1: Within-species cell-type taxonomies

Each species was independently analyzed, all nuclei were well mixed

across datasets and across individuals
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Cell types were grouped
into five neighborhoods

were analyzed separately
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Parts 1: Within-species cell-type taxonomies

Species cell types were hierarchically organized into dendrograms

based on transcriptomic similarity
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Parts 2: Divergent abundances of cell types

MTG cell types are largely conserved
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Parts 2: Divergent abundances of cell types

Great apes have similar proportions of two major subtypes of L5/6 IT

CAR3 neurons that have high or low CUX2 expression

B Human Chimp Gorilla Rhesus Marmoset
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BG: Among L5/6 IT CAR3 neurons, two distinct subtypes had high and low CUX2 expression.
High-CUX2 neurons are enriched in language-related regions in temporal (i) and parietal (I5ift) cortex.
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Results: - Subtype proportions were balanced in great apes.
- Mostly low-CUX2 in rhesus.
- Mostly high-CUX2 in marmosets.



Parts 2: Divergent abundances of cell types

Low-CUX2 neurons were consistently more enriched in deeper layers
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Methods: MERFISH
Results:
- In human, the high-CUX2 subtype extended from upper layer 6 through layer 5.
The low-CUX2 subtype was enriched at the border of layers 5 and 6.
- In rhesus MTG, high-CUX2 neurons varied along the gyrus with little on the ventral side (&),
and more on the dorsal side (E{).



Parts 3: Primate specializations of cell-type expression

Each subclass had a similar number of markers in all species
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Parts 3: Primate specializations of cell-type expression

Expression similarity decreased with evolutionary distance, faster in Non-neurons
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Parts 4. Human specializations of glial cells

Human astrocyte DEGs were enriched in synaptic signaling

A B , .. C

Great ape differential

gene expression of Intersections of DEGs B0 Tems
cortical astrocytes Human only Neuron to neuron synapse - [N
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v
Expression [22::():]2 FDR Do
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BG: Glial cells (f% FR4AAR-IEH2R Jt) exhibited the most divergent gene expression changes
Goal: To uncover their specialized transcriptional programs

Result: - More human DEGs (1189) than chimpanzee (787) or gorilla (617) DEGs.
- Human DEGs: three times more highly divergent (>10-fold).
- Enriched in synaptic signaling and protein translation pathways.



Parts 4. Human specializations of glial cells

Neuroligins and neurexins showed divergent expression patterns across great ape
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Parts 5: Enrichment of HARs and hCONDELs near human DEGs
hDEG near HARs play critical roles in synapse establishment, elimination, and

maintenance

* Genomic regions:
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What problem does this article want to solve?

What is the core conclusion?

Questions: How do cellular gene expression changes link to human cognitive uniqueness?

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly
understood.

Through the integration of diverse datasets, we identified gene expression changes that may be linked to human
adaptive evolution.

Conclusions:

Our study found that MTG cell types are largely conserved across approximately 40 million years
of primate evolution.

The composition and spatial positioning of cell types are shared among great apes.

» Special features: In each species, hundreds of genes exhibit cell type—specific expression changes, particularly in
pathways related to neuronal and glial communication.

» Special features: Human-specific DEGs are enriched near likely adaptive genomic changes and are poised to
contribute to human-specialized cortical function.



Take home messages

» Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large
shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG.

» Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or
oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage.
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Take home messages

» Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large
shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG.

» Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or
oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage.

» Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes
distinctively define adult human cortical structure.

» Human-specific DEGs are enriched near likely adaptive genomic changes and are poised to contribute to human-specialized
cortical function
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Limitations

O Unbalanced sample size for rare cell types
O Lack of species diversity

O Insufficient functional verification
O The dynamic changes of cell states have not been fully explored



Typos in this article

14T EZFE4$E: Post hoc pairwise t tests between humans and each NHP identified up to
fivefold more L5/6 IT CAR3, L5 ET, and PVALB-expressing chandelier interneurons in marmosets.
2.75%81%EF: Of note, four members of the neuregulin-ErbB signaling pathway showed
differential gene expression in great ape astrocytes, with two receptors (EGFR and ERBB4)
displaying expression changes in opposite directions (Fig. 5, | and J)

3.7%AF1%Z[&3=: Up-regulation of human ERBB4 expression was higher in protoplasmic and fibrous
astrocytes than in interlaminar astrocytes (Fig. 3J and fig. S5G)
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Human-Specific Features of the Neocortex: Gene Expression and Cellular Insights

AT fRRMA 4618 Research Objective

€ Understand human-specific features of the neocortex

€ I|dentified a subset of changes that may be adaptive

€ Found putative links between human accelerated regions (HARs) and human conserved deletions (RCONDELSs) and human
expression specializations

T 2594 / 32538 Methods

* Used comparative single-nucleus transcriptomics

» Analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common
marmosets

LER NI % 2 /E+# Results and Phenomena

» Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large
shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG.

» Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or
oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage.

» Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes
distinctively define adult human cortical structure.
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