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Abstract

Background: Evolutionary conservation is an invaluable tool for inferring functional significance in the genome,
including regions that are crucial across many species and those that have undergone convergent evolution. Compu-
tational methods to test for sequence conservation are dominated by algorithms that examine the ability of one or
more nucleotides to align across large evolutionary distances. While these nucleotide alignment-based approaches
have proven powerful for protein-coding genes and some non-coding elements, they fail to capture conservation

of many enhancers, distal regulatory elements that control spatial and temporal patterns of gene expression. The
function of enhancers is governed by a complex, often tissue- and cell type-specific code that links combinations of
transcription factor binding sites and other regulation-related sequence patterns to regulatory activity. Thus, func-
tion of orthologous enhancer regions can be conserved across large evolutionary distances, even when nucleotide
turnover is high.

Results: We present a new machine learning-based approach for evaluating enhancer conservation that leverages
the combinatorial sequence code of enhancer activity rather than relying on the alignment of individual nucleo-
tides. We first train a convolutional neural network model that can predict tissue-specific open chromatin, a proxy for
enhancer activity, across mammals. Next, we apply that model to distinguish instances where the genome sequence
would predict conserved function versus a loss of regulatory activity in that tissue. We present criteria for systemati-
cally evaluating model performance for this task and use them to demonstrate that our models accurately predict
tissue-specific conservation and divergence in open chromatin between primate and rodent species, vastly out-
performing leading nucleotide alignment-based approaches. We then apply our models to predict open chromatin
at orthologs of brain and liver open chromatin regions across hundreds of mammals and find that brain enhancers
associated with neuron activity have a stronger tendency than the general population to have predicted lineage-
specific open chromatin.

Conclusion: The framework presented here provides a mechanism to annotate tissue-specific regulatory function
across hundreds of genomes and to study enhancer evolution using predicted regulatory differences rather than
nucleotide-level conservation measurements.
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INTRODUCTION: Diverse phenotypes, including
large brains relative to body size, group living,
and vocal learning ability, have evolved multi-
ple times throughout mammalian history.
These shared phenotypes may have ansen re-

bination of transcription factor binding sites
and other sequence features can be main-
tained across millions of years of evolution,
allowing the function of the enhancer to be
conserved in a particular cell type or tissue.
ing the function of or-

peatedly by means of common
discernible through genome comparisons.

RATIONALE: Protein-coding sequence differ-
ences have failed to fully explain the evo-
lution of multiple mammalian phenotypes.
This suggests that these phenotypes have
evolved at least in part through changes in
gene expression, meaning that their differ-
ences across species may be caused by differ-
ences in genome sequence at enhancer regions
that control gene expression in specific tissues
and cell types. Yet the involved in

thologous enhancers across dozens of spe-
cies is currently infeasible, but new machine
learning methods make it possible to make
reliable sequence-based predictions of en-
hancer function across species in specific
tissues and cell types.

RESULTS: To overcome the limits of studying
individual nucleotides, we developed the Tissue-

Aware Conservation Inference Toolkit (TACIT),
Rather than measuring the extent to which
ides are conserved across a

phenotype evolution are largely unknown. Se-
quence conservation-based approaches for iden-
tifying such enhancers are limited because
enhancer activity can be conserved even when
the individual nucleotides within the sequence
are poorly conserved. This is due to an over-
‘whelming number of cases where

region, TACIT uses machine learning to test
‘whether the function of a given part of the ge-
nome is likely to be conserved. More specifi-
cally, convolutional neural networks learn the
tissue- or cell type-specific regulatory code con-
necting genome sequence to enhancer activ-

turn over at a high rate, but a similar com-
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Tissue-Aware Conservation Inference Toolkit (TACIT) associates genetic differences between
species with phenotypes. TACIT works by generating open chromatin data from a few species in a tissue
related to a phenotype, using the sequences underlying open and closed chromatin regions to train

a machine learning model for predicting tissue-specific open chromatin and associating open chromatin
predictions across dozens of mammals with the phenotype. [Species silhouettes are from PhyloPic]
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cies in tissue or cell type-specific enhai..c.
activity with genome sequence differences at
enhancer orthologs. We then connect these
predictions of enhancer function to pheno-
types across hundreds of mammals in a way
that for species’ ic related-
ness. We applied TACIT to identify candidate
enhancers from motor cortex and parvalbumin
neuron open chromatin data that are associated
with brain size relative to body size, solitary
living, and vocal learning across 222 mammals.
Our results include the identification of multi-
ple candidate enhancers associated with brain
size relative to body size, several of which are
located in linear or three-dimensional prox-
imity to genes whose protein-coding muta-
tions have been implicated in microcephaly or
macrocephaly in humans. We also identified
candidate enhancers associated with the evo-
lution of solitary living near a gene implicated
in separation anxiety and other enhancers as-
sociated with the evolution of vocal learning
ability. We obtained distinct results for bulk
motor cortex and parvalbumin neurons, dem-
onstrating the value in applying TACIT to both
bulk tissue and specific minority cell type pop-
ulations. To facilitate future analyses of our
results and applications of TACIT, we released
predicted enhancer activity of >400,000 can-
didate enhancers in each of 222 mammals and
their associations with the phenotypes we
investigated.

CONCLUSION: TACIT leverages predicted en-
hancer activity conservation rather than
nucleotide-level conservation to Connect ge<

‘to phenotypes

imals. TACIT can be applied to any phenotype
‘with enhancer activity data available from at
least a few species in a relevant tissue or cell
type and a whole-genome alignment available
across dozens of species with substantial
phenotypic variation. Although we developed
TACIT for transcriptional enhancers, it could
also be applied to genomic regions involved
in other components of gene regulation, such
as promoters and splicing enhancers and
silencers. As the number of sequenced genomes
grows, machine learning approaches such as
TACIT have the potential to help make sense
of how conservation of, or changes in, subtle
genome patterns can help explain pheno-
type evolution.
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Vocal learning-associated convergent evolution in
mammalian proteins and regulatory elements
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Ashley R. Brown, Tianyu Lu, Byung Kook Lim, Eiman Azim, Zoonomia Consortium, Nathan L. Clark,
Wynn K. Meyer, Sergei L Kosakovsky Pond, Maria Chikina,
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Vocal ion learning (“vocal
learning”), or the ability to modify vocalizations
according to the social environment, forms the
basis of human speech production. Among the
Boreoeutherian this trait has evolved
independently in four different lineages: hu-
mans, bats, cetaceans, and pinnipeds. In verte-
brates, the evolution of vocal learning behavior
has been associated with the evolution of brain
anatomical features, including cortical long-
range projection neurons (e.g., songbirds and
humans). Moreover, neural circuits for the
production of learned vocalization display con-
vergent evolution in patterns of gene expression.

Behavior
evolution

Regulatory Protein
evolution evolution

—_——T
_:,_lm

- — =

RATIONALE: Despite evidence for the conver-
gent evolution of vocal learning at the behav-

L))

RESULTS: First, we studied convergent evolt C"eck ol

in protein-coding regions using the RERconv.. ;o
and HyPhy methods to find 200 significantly
associated genes. The genes that tend to be
under higher constraint in vocal learning mam-
‘mals are enriched for genes involved in human
autism. However, the vast majority of genes are
driven by signals from only one or two clades of
'vocal learning mammals, suggesting that a large
component of the genetic basis for the trait may
lie instead in the convergent evolution of regu-
latory elements. To explore that hypothesis, we

an ical and ional charac-
terization of the Egyptian fruit bat motor cortex.
‘We identified a subregion of the motor cortex
that is implicated in vocal production and direct-
ly projects to the motoneurons controlling the
‘bat’s larynx. This allowed us to profile candidate
regu]amry elements active in this vocalization-

joral, ical, and gene ion levels
in vertebrates, the genetic underpinnings
of vocal learning and human speech in mam-
mals are poorly understood. New machine
learning approaches and the newly sequenoed
of the
Consortium provide the foundation to rigo-
rously study this question. The repeated evo-

subregion of the motor cortex by mea-
suring open chromatin. These open chromatin
regions and 222 mammalian genomes of the
Zoonomia Consortium served as input to the
Tissue-Aware Conservation Inference Toolkit
(TACIT) machine learning approach, which was
applied to find 50 candidate regulatory elements
‘whose prediched motor cortex open chromatin

lution of vocal learning across
allows us to determine which parts of the
genome are significantly associated with
the behavior.

are highly cor-
related with the presenoeofvomllmmmgbehav-
ior. Many of these open chromatin regions were
‘near genes associated with autism, and they tended
to overlap with open chromatin specific to the

for vocalization

Vocal
?ﬂ:]
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evidence

Predicted motor cortex open
chromatin (TACIT Method)

Vocal nonlearner
@ Vocal learner

Low

« Corticobulbar direct

projection neurons
« Autism association

Lineage-specific
amino acid mutations
(RERconverge and HyPhy)

High

Finding vocal learning-associated regions of the mammalian genome. We compared the evolution of
vocal learning behavior to the evolution of coding and noncoding elements of the genome, leveraging

. and

in the Egyptian fruit bat orofacial motor cortex

(ofM1). We show convergent evidence of the importance of long-range projection neurons and autism-

associated gene networks.
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neurons that have been
mphmhed in the evolution of vocal learning.

CONCLUSION: Although it is impossible to know
‘which parts of the genome evolved for human
speech production, we are able to use the repeated
evolution of a component of that behavior, vocal
learning, to find significantly associated genes
and ling regions. Our results

that the presence of vocal learning behavior in a
given clade leads to weak selective pressure across
a broad range of genes and stronger selective
pressure across a smaller number of motor cortex
noncoding regions. These genes and noncoding
regions show an association with autism, which
suggests that there are shared regulatory net-
‘works for vocal and social behavior that tend to
adapt in similar ways when a lineage evolves
vocal learning behavior. More broadly, our re-
sults suggest that the evolutionary history of se-
lective pressures across a location in the genome
can provide insight into how that region might
influence human behavior.
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Rethinking the genetic basis of traits
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Rethinking the genetic basis of traits
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TACIT - Tissue-Aware Conservation Inference Toolkit

Motor cortex open chromatin data
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TACIT works by generating open chromatin data from a few species in a tissue related to a phenotype, using the
sequences underlying open and closed chromatin regions to train a machine learning model for predicting tissue-
specific open chromatin and associating open chromatin predictions across dozens of mammals with the

phenotype.



Model Training and Prediction

Training Prediction
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Performance evaluation - Does it Work?
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Performance evaluation

ivergence from mouse (MYA)

> Phylogenetic Signal
The models' predictions reflect evolutionary relationships.
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Prediction Across Species
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Linking to Phenotypes
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Key Finding - Brain Size-Associated Motor Cortex OCRs

OCR ortholog open chromatin prediction
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Key Finding - Brain Size-Associated PV+ Interneurons OCRs
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Genetic basis of social behavior

Social animals are those animals that interact highly
with other animals, usually of their own species
(conspecifics)

Animals that are solitary are those which have minimal
interaction with other members of their species.
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Genetic basis of social behavior
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Genetic basis of social behavior
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‘. Social species @ Solitary species

a PV+ interneuron OCR
located near the genes
GTF2IRD1 and GTF2I
shows a marginal
negative association
between OCR and solitary
living across different
mammal species.

a motor cortex OCR near
GTF2IRD1 and GTF2|
demonstrates a more
statistically significant
negative association
between predicted motor
cortex open chromatin at
this site and solitary living.



Takeaways from TACIT

Core Ildea: TACIT leverages machine learning predictions of enhancer Behavior Regulatory Protein
activity conservation rather than relying solely on nucleotide-level evolution evolution evolutiol

sequence conservation.
] |—|II i

1. Advancing the Study of Non-Coding DNA in Evolution by Focus on —:I—IW
Enhancer Function
2. TACIT approach could be extended to other genomic regions involved ‘, _-—II_>

in gene regulation, such as promoters, and splicing enhancers and
l | I

silencers —[
» Assumption-Related Limitations _-_I_N

1. Conserved Regulatory Code - Assumes that the regulatory code =
e )—III il

for a specific tissue or cell type is conserved across all species in
which predictions are made.
2. Limited to Orthologs
» Experimental Validation:
1. Confirming Enhancer Activity
2. Linking Enhancers to Target Genes
3. Phenotype
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Q&A

Thank you for your attention!



