

Can crows really

COUNT?

Baohua Chen

05/07/25

Counting is difficult

Age	Ability	Numerical awareness	
1	Walk independently	More and less	
2	Hum simple melodies	wore and less	
3	Speak sentences	Recites number words in order	
4	Count objects	Understands number meanings	

Many animals know "much" and "less", but not numbers

How to exam whether fish know "more and "less"?

Crows "count" the number of self-generated vocalizations

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Andreas Nieder

Training a crow two identify numeric cues

Three crows were trained by both visual and auditory cues

Two types of cues

Visual cues	Auditory cues	Number of vocs
1		*
2	₩	++
3		+++
4	\nearrow	+- - - -

Thousands-of-trials training

Examination (100-300 trials for each crow and each type of cues)

Reactive behaviors or Planned behaviors?

Reactive behaviors (conditional reflex)

Planned behaviors (intentional action)

Predict the number of calls by the first call

23 acoustic features of **Total number of Supervised** machine learning the first call calls Classifier (分类器) **Duration Tone** Loudness **Support Vector Machine Spectrum** Other features

Predict the number of calls by the first call

Unimodal prediction

A&D: Predict accuracy of SVMs

G: Average accuracy of SVMs

B: Deviation of predicted number

Cross-modal prediction

C&F: Predict accuracy of SVMs

H: Average accuracy of SVMs

E: Deviation of predicted number

Why and how crows made mistakes?

Very simple discussion

- 1. Crows can deliberately produce instructed numbers of vocalizations
 - a. Behavior guided by **approximate number system** (ANS), which is shared by human, primates, bees, angel fish, and zebrafish
 - b. (**Not mentioned in this article**) However, most of animals can only use the ANS to distinguish "more" and "less". Real counting are only found in human, primates, and bees before
 - c. Vocal response requires **longer reaction time** (~1–2s) than pecks and head movements (hundreds of millisecond), implies that the counting of crows is a complex behaviors like primates and human
- 2. Neural Basis and Evolutionary Significance
 - a. Crows, like other songbirds, have song nuclei in their brains that control vocal repetition and support cognitive functions
 - b. Better vocal learning in songbirds is associated with stronger problem-solving skills, suggesting overlap between communication and cognition systems

Omissions

Cross-modal transfer learning

Take home messages

Not only humans can count

We can design a very interesting experiment, and publish a *Science* without sequencing

Lunch is very important

Thanks for your attention!