

Insulin signaling in the long-lived reproductive caste of ants

Hua Yan^{1,2,3}†, Comzit Opachaloemphan¹†, Francisco Carmona-Aldana¹†, Giacomo Mancini⁴, Jakub Mlejnek⁴, Nicolas Descostes¹‡, Bogdan Sieriebriennikov^{1,4}, Alexandra Leibholz⁴, Xiaofan Zhou⁵, Long Ding⁴, Maria Traficante⁴, Claude Desplan⁴*, Danny Reinberg^{1,2}*

Fuqiang Lin 2025-8

Authors

- Danny F. Reinberg
- 《Epigenetics》
- Research interests: Understanding the molecular mechanisms underlying key aspects of mammalian gene expression that foster distinct cell types; in particular, epigenetic regulation of chromatin dynamics.

- > Hua Yan
- Assistant Professor at the University of Florida

Reproduction & longevity trade-off

nature

The Endocrine Regulation of Aging by Insulin-like Signals

Reproduction & longevity trade-off

nature aging

- ➤ Fasting(禁食), Insulin(胰岛素) & health, body management
- Decreased insulin level & extension of lifespan
- > Decreased insulin level & negative impact on reproductive ability

Reproduction & longevity trade-off

- > Worker
 - 7 months
 - similar genomes

How can ants break free from the constraints between longevity and reproductive ability?

- Queen
 - 30 years
 - > 1,000,000 eggs
 - not follow the limitation of this trade-off
 - gain the ability of reproduction and longevity at the same time

Extended longevity upon caste switching from worker to pseudo-queen

- Insulin expression is increased in the brain of the reproductive caste
- Insulin promote the development of the ovary and the ability to lay eggs
- Insulin can activate AKT and MAPK, but AKT is down-regulated
- FOXO localizes in the nucleus, resulting in prolonged life
- ➤ The IIS inhibitors Imp-L2 and ALS are upregulated in the ovary
- Imp-L2 specifically blocks AKT in the fat body
- ✓ An effective solution to the discrepancy between increased insulin and reproduction and prolonged life

Insulin expression is increased in the brain of the reproductive caste

Increased Insulin expression

Ins: insulin homolog
IGF: insulin-like growth factor

> Localization of Ins mRNA

IPCs: insulin-producing cells

Insulin promotes reproductive ability

 the number of yolk oocytes in the eggs increased by 2.3 times

- Insulin expression is increased in the brain of the reproductive caste
- > Insulin promotes oogenesis
- Insulin can activate AKT and MAPK, but AKT is down-regulated
- FOXO localizes in the nucleus, resulting in prolonged life
- The IIS inhibitors Imp-L2 and ALS are upregulated in the ovary
- Imp-L2 specifically blocks AKT in the fat body
- An effective solution to the discrepancy between increased insulin and reproduction and prolonged life

10

Ins (µM)

20

Insulin can activate AKT and MAPK, but AKT is down-regulated

0.5

10

Ins (µM)

20

FOXO: forkhead box O transcription factor, related to apoptosis, autophagy, and cell cycle arrest

- Insulin expression is increased in the brain of the reproductive caste
- Insulin promotes oogenesis
- Insulin can activate AKT and MAPK, but AKT is down-regulated
- FOXO localizes in the nucleus, resulting in prolonged life
- ➤ The IIS inhibitors Imp-L2 and ALS are upregulated in the ovary
- ➤ Imp-L2 specifically blocks AKT in the fat body, help to achieve different activation
- An effective solution to the discrepancy between increased insulin and reproduction and prolonged life

The IIS inhibitors Imp-L2 and ALS are up-regulated in the ovary

➤ The IIS inhibitors are up-regulate

Imp-L2: Imaginal morphogenesis protein-Late 2
ALS: Acidlabile Subunit

> Imp-L2 specifically blocks AKT in the fat body

- Ovaries produce Imp-L2,
- Reduces the activity of AKT, leading to the extension of lifespan
- MAPK activity is less affected, not influence the reproductive ability
- ✓ Ants effectively resolve the conflict between the acquisition of reproductive ability and the extension of lifespan by differentially inhibiting AKT phosphorylation downstream of the Ins pathway.

Summary

- Insulin expression is increased in the brain of the reproductive caste
- Insulin activates the ovaries, leading to the production of eggs
- Insulin can activate AKT and MAPK, but AKT is inhibited
- > Imp-L2 specifically blocks AKT in the fat body
- > FOXO localizes in the nucleus, resulting in prolonged life
- ✓ Ants efficiently break free from the reproduction-longevity trade-off through such a strategy, enabling reproductive individuals to simultaneously achieve a longer lifespan.

Highlights and disadvantages

➤ Highlights:

- Reveal selectivity in the response of AKT and MAPK to insulin.
- Ants restrict IIS hyperactivity throughout their very long reproductive life through selective inhibition of AKT by Imp-L2, thus retarding aging and achieving longevity in the reproductive caste.

➤ Disadvantages:

 There was almost no discussion about the queen, including the results of insulin injection, the responses of AKT and MAPK pathways to insulin and Imp-L2

Thanks for your listening!