

Sexually dimorphic (二态) dopaminergic circuits determine sex preference

Published: 10 Jan 2025

Reporter: Jingrui Lu **Date:** 2025.8.15

Introduction

Social decisions

Selection of social partners

Interact with opposite sex

Interact with same sex

- Provides social support
- Facilitates collaboration for shared goals
- Q1. Under natural conditions, what is the typical sex preference? Does sex preference differ between male and female?
- Q2. Does this gender preference shift in response to external disturbances? 4

Sex preference changes under survival threat

TMT: Gases with the smell of predators (捕食者).

For Male Mice

- Sex preferences of both male and female mice <u>prefer</u>:
 - female (under natural conditions)
- Sex preferences of both male and female mice <u>changed</u>:
 - from female to male (under survival threat)

For Female Mice

What neural mechanisms drive this change in sex preference?

VTA^{DA} neuron is essential for the switching of sociosexual preference

TH (tyrosine hydroxylase): specific marker for dopamine (DA, 多巴胺) neurons

DA neurons in the VTA region (VTADA) exhibit significant changes in neural activity when TMT treatment is applied

VTADA neuron is essential for the switching of sociosexual preference

Neuron activity in VTADA downstream regions

DA pathways may be differentially involved in sociosexual preference modulation.

Dopamine (DA) pathway

- Reward processing
- Social behaviour regulation

How the VTADA-NAc and VTADA-mPOA pathways are involved in Male Mice social interaction?

Male Mice

Double retrograde-virus tracing

NAc- and mPOA-projecting VTA^{DA} neurons represent distinct populations

Balance between the VTADA-mPOA and VTADA-NAc projections

Male Mice

 $F_{mPOA} = F_{NAC}$ 3 Ctrl (15) Zone I female **♀** TMT (18) male Zone II 16 Zone I Zone II *** % of social interaction Social time (s) 7 8 7 8 100-100distribution 50-50-% of -100 -50 50 100 mPOA dominance index Ctrl TMT Zone I

Positively correlated with male interaction

Negatively correlated with female interaction

Zone I: NAc dominant region **Zone II**: mPOA dominant region

mPOA dominance index

$$D = (F_{ ext{mPOA}} - F_{ ext{NAc}})/(F_{ ext{mPOA}} + F_{ ext{NAc}}) imes 100\,\%$$

Balance between the VTADA-mPOA and VTADA-NAc projections

Male Mice $VTA^{DA} \rightarrow mPOA$ Social Preference TH-Cre 250-DIO-hM3Dq 200 CNO Time (s) 150changed 100mPOA VTA 50-Ctrl hM3Dq mPOA activation **Social Preference** TH-Cre DIO-hM4Di 400-CNO Time (s) 2 changed 100-

Ctrl

hM4Di

3 with TMT

mPOA inhibition

VTADA-NAc projection determines female mice social preference.

VTA^{DA}-NAc projection determines female mice social preference.

Female Mice

Pearson correlation analysis

Median percentile line of Ca2+ signals

Male interaction

Zone I: Lower excitability of the VTADA-NAc projection **Zone II**: Higher excitability of the VTADA-NAc projection

AcVphyjesetting VTADA-Neturopmojectsidtivelysidionetylated evitate bowlithe bowlithen and anadefemberaction of the sex preference change in female mice.

Firing patterns of VTADA-NAc projection

Firing pattern

Tonic dopamine release

Low-frequency, irregular/spontaneously single-spike firing

Phasic dopamine release

High-frequency burst firing

Pattern I: Tonic Firing

Sustained low-frequency (typically ~5-Hz) tonic firing

- Peak (half-height width): Larger
- AUC: Larger
- Rise Rate: Smaller
- · HHD (half-height duration): Larger

Pattern II: Phasic Firing

High-frequency (>10-Hz, usually <50-Hz) phasic firing with three to five spikes per burst

- Peak (half-height width): Smaller
- AUC: Smaller
- Rise Rate: Larger
- HHD (half-height duration): Smaller

Firing patterns of VTADA-NAc projection

TMT

Ctrl

- Phasic firing promotes female preference.
- Tonic firing promotes male preference.

TMT exposure <u>inhibits</u> phasic firing and facillitates tonic firing.

TMT

Ctrl

DA transmission in VTADA-NAc projection

Female Mice

Phasic stimulus: higher DA release
Tonic stimulus: lower DA release

Whole-cell patch clamp AP recordings

- D1R are specifically responsive to the phasic firing
- D2R are more sensitive to the tonic firing

DA transmission in VTADA-NAc projection

Female Mice

Optogenetic excitation of D1R Mimic phasic firing

Optogenetic inhibition of D2R Mimic tonic firing

Phasic firing-facilitated DA-D1R transmission and tonic firing-dominated DA-D2R transmission in the NAc determine female mice sex preference.

Summary

Dimorphic neural circuits that determine sex preference

Thanks for your listening!