

Article

https://doi.org/10.1038/s41559-025-02746-z

Threat reduction must be coupled with targeted recovery programmes to conserve global bird diversity

Received: 20 June 2024

Accepted: 11 May 2025

Kerry Stewart ®¹ ⋈, Chris Venditti ®¹, Carlos P. Carmona ®², Joanna Baker ®¹, Chris Clements ®³, Joseph A. Tobias ®⁴ & Manuela González-Suárez ®¹

- Manuela Gonzalez-Suarez
- School of Biological Sciences, University of Reading
- Associate Professor

Background: Why Birds, Why Now?

Birds are a diverse and functionally critical group

Stiller et al. 2024

The Sixth Mass Extinction

Barnosky et al. 2011

Research Questions

- How many birds may go extinct in the next 100 years?
- How will extinctions affect functional diversity?
- Can reducing threats or targeted recovery reduce losses?

A total of 9,873 species

Data type	Source	Purpose
Morphological traits (11)	AVONET database	Ecological niches: body mass, beak, wing, tail, tarsus
Threat information (scope, severity)	IUCN Red List	Predict future population declines & extinction risk
Phylogenetic tree	BirdTree project	Phylogenetic covariance in pPCA & random-effects
Spatial distribution	AVONET	Account for spatial non-independence

Threat Reduction Scenarios

Four scenarios of threat reduction

Baseline: current IUCN threats continue

Minimal: remove threats in $\geq 10\%$ of range

Partial: ≥50% range protected

Complete: 100% threat removal

How many bird species may go extinct in the next 100 years?

- How will extinctions affect functional diversity?
- Can reducing threats or targeted recovery mitigate losses?

Extinction risk model

Bayesian extinction risk model

Method: PGLMM

Response: <u>IUCN Red List category</u> probabilities (NT, VU, EN, CR)

Predictors: Threat scope × severity

Controlled: phylogeny + spatial autocorrelation

Extinction risk model-future prediction

• Convert IUCN category → extinction probability

IUCN category	100-year extinction probability	
NT	0.0005	
VU	0.01	
EN	0.667	
CR	0.999	

Extinction risk model-future prediction

Convert IUCN category → extinction probability

$$ex_{p,s} = \sum_{c} (ex100_{c} \times cat_{p,c,s})$$

ex_{p,s}: extinction probability of species s in 100 years

ex_{100,c}: **100-yr extinction** probability for IUCN category c

catp_{c,s}: probability that species s is in category c (MCMCglmm)

Projected Extinctions

- Extinction probability
- High-risk species lost often
- Average across 1000 runs →
 expected FD after 100 yrs

Simulation	Species A	Species B
Sim 1	Survive	Survive
Sim 2	Survive	Extinct
Sim 3	Extinct	Extinct

Projected Extinctions

- ~517 species (≈5.2%)
 projected to go extinct
- 3 times more than all extinctions since 1500

Research Questions

- How many bird species may go extinct in the next 100 years?
- How will extinctions affect functional diversity?

• Can reducing threats or targeted recovery mitigate losses?

Estimating functional diversity

Variance explained by phylogenetic principal components

- 11 AVONET morphological traits
- phylogenetic PCA

pPC1 \approx body size; pPC2 \approx wing morphology;

pPC3 ≈ beak & tail morphology

Estimating functional diversity

How many species share similar trait combinations?

Density cloud

Each species is smoothed into a Gaussian hill

Adding up all species produces the density cloud

Estimating functional diversity

• E	Extinction	probability
-----	------------	-------------

- High-risk species lost often
- Average across 1000 runs →
 expected FD after 100 yrs

Simulation	Species A	Species B
Sim 1	Survive	Survive
Sim 2	Survive	Extinct
Sim 3	Extinct	Extinct

Functional diversity loss

~3.2% FD loss in 100 years

Loss concentrated in large-bodied & aquatic species

Research Questions

- How many bird species may go extinct in the next 100 years?
- How will extinctions affect functional diversity?
- Can reducing threats or targeted recovery reduce losses?

Which Threats Matter

Habitat loss: prevents most extinctions

Habitat

Hunting

Climate

Invasive

Pollution

Disturbance

Hunting & disturbance: protect more FD per species

Targeted Recovery Programmes

Protect 100 most unique species → avoid 68% FD loss

Only ~37 extinctions need to be averted

Threat reduction alone won't stop biodiversity loss

Targeted recovery of unique species is essential

A combined strategy is the only effective solution