

Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon (*Acipenser ruthenus*)

Authors: levgeniia Gazo, Ravindra Naraine, levgen Lebeda, Aleš Tomčala, Mariola Dietrich, Roman Franek, Martin Pšenička, Radek Šindelka

Presenter: Yuchen Sun

Background

Methods

Results

Conclusion

Author Information

Dr. levgeniia Gazo University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters

Article

Ancient Sturgeons Possess Effective DNA Repair Mechanisms: Influence of Model Genotoxicants on Embryo Development of Sterlet, Acipenser ruthenus

Ievgeniia Gazo 1,*10, Roman Franěk 10, Radek Šindelka 2, Ievgen Lebeda 10, Sahana Shivaramu 1, Martin Pšenička 1 and Christoph Steinbach 1

frontiers Frontiers in Cell and Developmental Biology

PUBLISHED 01 March 2023 DOI 10.3389/fcell.2023.1119229

Check for updates

OPEN ACCESS

Qiang Wu, Shanghai Jiao Tong University, China

Jun-Yu Ma. Guangdong Second Provincial General Hospital, China

DNA repair genes play a variety of roles in the development of fish embryos

Abhipsha Dey, Martin Flajšhans, Martin Pšenička and Ievgeniia Gazo*

Background-Genotoxicity (Zebrafish)

Background-DNA Damage Response

Background-Sterlet (Acipenser ruthenus)

Background-Genomic Plasticity

Aim and Objective

Objective:

- To investigate how genotoxicants affect the DNA damage response at different embryonic stages in *Acipenser ruthenus*.
- What are the transcriptomic and proteomic changes in response?

Genotoxicants tested:

- Camptothecin (CPT): Topoisomerase I inhibitor, induces DNA breaks.
- Olaparib (Ola): PARP-1 inhibitor, induces DNA damage.

Graphic Abstract

DNA damage response

Hours postfertilization (hpf)

2-24 hpf

24-48 hpf

48-72 hpf

Hatching (8 dpf)

7 nM CPT or 20 µM Ola

Result-Embryo Viability

- CPT/Ola exposure caused reduced viability and hatching rates, particularly at early stage.
- Later-stage exposure showed better survival and hatching.

Results-DNA Fragmentation

- Early-stage exposure to CPT/Ola caused increased DNA fragmentation.
- Later-stage exposure showed no effects.
- DNA repair occurs at 7 dpf.

Result-Phenotype Formation

CPT 24-48

Control

CPT 48-72

Ola 2-24

Ola 24-48

Ola 48-72

Result-Transcriptomic Patterns

- Overlapping DEGs: High overlap between CPT 24-48 hpf and Ola 2-24 hpf (56%).
- Stage-Specific Changes: Expression patterns varied by exposure stage.

Result-DDR Pathways

- Upregulated genes in DNA repair, cell cycle, and apoptosis pathways.
- Downregulated metabolic pathways.

Result-Correlation

	Viability	Hatching	DNA Fragmentation	DEGs	DAPs
Viability	1.00	0.95 *	-0.73	-0.91 *	-0.88 *
Hatching	0.95 *	1.00	-0.62	-0.93 *	-0.87
DNA fragmentation	-0.73	-0.62	1.00	0.73	0.38
DEGs	-0.91 *	-0.93 *	0.73	1.00	0.68
DAPs	-0.88 *	-0.87	0.38	0.68	1.00

Conclusion & Discussion

Implications for Sturgeon Aquaculture:

- DNA damage at early stages could significantly impact embryo survival, hatching, and development.
- Understanding DDR in sturgeons may aid in improving the resilience of these species in aquaculture.

Future Directions

Long-term effects of genotoxicant exposure on sturgeon development.

The role of proteins in stress response.

Additional biomarkers for toxicological studies in aquatic organisms.

Thanks for listening!