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@® Background

 T2T-CHM13 filled 8% of repeat-rich regions.
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» Study human de novo mutation (DNM) and
recombination by fully assembled and phased
assemblies
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Four-generation, 28-member family CEPH 1463 has been intensively studied over the past three decades.

18980,CEPH COLLABORATIVE

PROGRAM DESCRIPTION

Centre d'Etude du
Polymorphisme Humain (CEPH):
Collaborative Genetic Mapping
of the Human Genome
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Elsewhere in this issue of Genomics is the first consortium
map, that of chromosome 10, from the CEPH collaboration
to map the human genome genetically, The map is truly a
collaborative achievement, in that the underlying genotypes
represent the efforts of laboratories collaborating with each
other and with CEPH to produce a primary genetic map of
the genome, consisting of polymorphic markers placed at ap-
proximately 20-cM intervals along each of the human au-
tosomes and the X chromosome. Such a map provides a tool
for the systematic localization of genes that determine in-

genetic map with DNA polymorphisms (Botstein et al., 1980).
A key premise of the CEPH collaboration is that the human
genetic map will be efficiently achieved by collaborative re-
search on DNA from the same sample of families. To this
end, CEPH provides to collaborating investigators high-
quality cellular DNA produced from cultured lymphoblastoid
cell lines (LCL) derived from each member of a reference
panel of large nuclear families/pedigrees and a database con-
tributed o and shared by these investigators. Collaborating
investigators determine genotypes with their probes and the
DNA from the CEPH panel to test the families for segregation
of these genetic markers. They then contribute the genotypes
to CEPH for preparation of a database which is returned to
them for linkage analysis and map construction. As of October
1, 1989, 63 research laboratories in the United States (36),
Canada (2), Europe (20), South Africa (2), Japan (2), and
Australia (1) collaborate with CEPH in this manner.

CEPH Reference Family Panel

Families with large sihships, living parents, and grand-
parents are especially informative for linkage mapping (White
et al, 1985). From 100 families available from various sources,
selected not for disease but for large sibship size, an initial
group of 40 families was defined for the CEPH reference
panel by the original group of collaborating investigators.
Table 1 shows the geographic origins of these families and
the contributors of the LCLs to CEPH. These are Caucasian
families. The mean sibship size for these 40 families, based
on those individuals for whom there are LCLs, is 8.3; no
family has less than 6 offspring, and 23 families have 8 or
more offspring. LCLs are available for all 4 grandparents in
each of 29 families of the reference panel.

Resource

A reference data set of 5.4 million phased human
variants validated by genetic inheritance from
sequencing a three-generation 17-member pedigree
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@® Genome sequence and assembly

« Deep WGS data from multiple orthogonal sequencing platforms were generated.
« Primarily on the first three generations (G1-G3) and used the fourth generation (G4) to validate de
novo germline variants.
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@® Genome sequence and assembly

EmEHRDIM
* 63.3% (319 out of 504) of chromosomes across G1-G3 are near-T2T.
» 42.3% (213 out of 504) of non-acrocentric chromosomes are spanned in a single contig.
« 288 centromeres (44.7%, 288 out of 644) across G1-G3 were assembled.
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® De novo SNVs and small indels

 The de novo callset included 755 SNVs and 73 indels across the autosomes, and 27 SNVs and 1 indel
on the X chromosome.
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® De novo SNVs and small indels

DNM originate from a parental gamete or the early embryo (postzygotic mutation, PZM)?
- using flanking SNVs to construct haplotypes, phase variants

Allele balance
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A final callset of 119 PZMs, accounting for 16% of total autosomal SNVs

Of the 62 PZMs in these four samples, 64.5% (n = 40) are transmitted to the next generation, compared
with 97.2% of germline SNVs and 100% of indels.
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® De novo SNVs and small indels

 In total, 81.4% of germline small DNMs originate on paternal haplotypes (4.38:1 paternal:maternal ratio)

« Asignificant parental age effect of 1.55 germline DNMs per additional year of paternal age.

« PZMs show no significant difference with respect to parental origin (1.38:1 paternal:maternal) and no
parental age effects
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® De novo SNVs and small indels

« Parental germline contributes 1.17 x 10-8 SNVs per bp per generation.

« De novo SNVs are significantly enriched in repetitive sequences, as much as 2.8-fold in centromeres and
1.9-fold in SDs.

 Alower PZM rate of 2.04 x 10-° SNVs per bp per generation across the autosomes, yet enriched 3.9 fold
in SD regions.
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® De novo TRs

* An average of 65.3 TR DNMs (including STRs, VNTRs and complex loci) per sample and estimated a TR
DNM rate of 4.74 x 10-6 per locus per haplotype per generation, with substantial variation across repeat
motif sizes

=

10°

=i
=
L
[ ]
]
(]
]

==k
=
]
tn
.
"
[

—
2
o
-
S
[
- -
&
e
D-l‘-‘l-

=k

S
=
[ ]
]

£ ]

L]

[ ]

‘1_“'_. e "II. II'- 1 'D'ﬂ

L
w
-__i
B
« Number of loci in reference genome

=&
=
]
o
[ ]
]
]

» Mutation rate (per locus, per haplotype,
per generation) + 95% CI

é@* §Q~ d‘?’+ 10 20 30 40
{Pﬂl‘ Minimum motif size in locus (bp)



® De novo TRs

Overall, 75.0% of phased de novo TR alleles were paternal in origin.
No significant bias towards expansions or contractions was observed.
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® De novo TRs

» a high-confidence set of 32 loci that were recurrently mutated among members of the pedigree.

* Arecurrent VNTR locus at chromosome 8: 2376919-2377075(T2T-CHM13)
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® Centromere transmission and de novo SVs

 Among the 288 completely assembled centromeres, 150 intergenerational transmissions were
assessed.
* 18 (12%) de novo SVs with roughly equivalent numbers of insertions and deletions
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Centromere transmission and de novo SVs
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» All a-satellite HOR de novo SV events involve integer changes in the basic a-satellite HOR

cassettes.
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Centromere transmission and de novo SVs

18 SV events for their potential effect on the hypomethylation pocket associated with the
centromere dip region (CDR)—a marker of the site of kinetochore attachment @ikiE=R) .
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® Y chromosome mutations

* 48 de novo SNVs in the male-specific Y-chromosomal region (MSY) across the 5

W Nae G2-G3 male individuals, ranging from 7 to 11 SNVs per Y transmission (mean,
9.6; median, 10)

* In total, a de novo SNV rate of 1.99 x 10-7 mutations per bp per generation, an
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@® Sequence-resolved recombination map

« 539 meiotic breakpoints in G3 with 99.8% supported by more than one approach were identified
with a refined median size of about 2.5 kb.
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@® Sequence-resolved recombination map

Overall, 15-20% of paternal and maternal homologues are transmitted without a detectable

meiotic breakpoint.
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@® Sequence-resolved recombination map
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Overall, 15-20% of paternal and maternal homologues are transmitted without a detectable
meiotic breakpoint.

Paternal recombination is significantly biased towards the ends of human chromosomes.
In G2—-G3, a decrease in crossover events with advancing parental age for both male and female
germlines was observed.
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@® De novo SVs

 None of the 27 euchromatic de novo SVs coincide with recombination crossovers.
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@® Summary and Discussion

» This study estimate a range of 98—-206 DNMs per transmission (average of 152 per generation)

» A strong paternal de novo bias (70-80%) and an increase with advancing paternal age, not only for
SNVs but also for indels and SVs, including TR

* 16% of de novo SNVs as postzygotic in origin, accounting for 12% of all SNVs transmitted to the
next generation , an increase over previous estimates

limitations:
« Sequencing limitation: homopolymers still remain challenging even with the use of Element data as
longer alleles and motifs embedded in larger repeats are still not reliably assayed with short reads.

« Super-complex genomic region limitation: unable to characterize DNMs in the acrocentric regions
due to the repetitive nature of the regions and rampant ectopic recombination

« Sample limitations: only one multigenerational family with single genetic background and used G4
only for validation purposes of transmitted variants.
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