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Tissue-like multicellular development triggered
by mechanical compression in archaea
Theopi Rados1†‡, Olivia S. Leland1†, Pedro Escudeiro2, John Mallon1, Katherine Andre1, Ido Caspy3,
Andriko von Kügelgen3, Elad Stolovicki4, Sinead Nguyen1, Inés Lucía Patop1§, L. Thiberio Rangel5,
Sebastian Kadener1, Lars D. Renner6, Vera Thiel7, Yoav Soen4, Tanmay A. M. Bharat3,
Vikram Alva2, Alex Bisson1*

The advent of clonal multicellularity is a critical evolutionary milestone, seen often in eukaryotes, rarely
in bacteria, and only once in archaea. We show that uniaxial compression induces clonal multicellularity
in haloarchaea, forming tissue-like structures. These archaeal tissues are mechanically and molecularly
distinct from their unicellular lifestyle, mimicking several eukaryotic features. Archaeal tissues undergo
a multinucleate stage followed by tubulin-independent cellularization, orchestrated by active membrane
tension at a critical cell size. After cellularization, tissue junction elasticity becomes akin to that of animal
tissues, giving rise to two cell types—peripheral (Per) and central scutoid (Scu) cells—with distinct actin and
protein glycosylation polarity patterns. Our findings highlight the potential convergent evolution of a
biophysical mechanism in the emergence of multicellular systems across domains of life.

M
ulticellularity has evolved multiple
times across the tree of life, funda-
mentally reshaping Earth’s biosphere.
Comparative studies across these in-
dependent transitions have revealed

common selective benefits, including increased
size, enhanced mechanical strength, and cellu-
lar differentiation—principles later confirmed
through experimental evolution (1–4). Although
well documented in eukaryotes and prokar-
yotes, the extent to which clonal multicellularity
contributes to the emergence of structural and
functional complexity in bacteria and archaea
remains unclear. Once mistaken for bacteria
owing to their lack of nuclei, archaea are now
recognized as a monophyletic group with eu-
karyotes (5). Most archaea lack a rigid cell wall
and are encapsulated by a proteinaceous sur-
face monolayer (S-layer), a two-dimensional
(2D) paracrystalline lattice composed of glyco-
proteins (6, 7). Although the archaeal envelope
structure is thought to make cells mechani-
cally vulnerable, it also facilitates close inter-
actions between cells, such as cell-cell contact
and fusion, which may have played a role in
the emergence of eukaryotes (8, 9). However,
the evolution of mechanosensory responses

driven by the lack of a rigid cell wall remains
elusive owing to the scarcity of in vivo studies.
The peculiar combination of genetic and bio-
physical traits prompted us to investigate the
mechanobiology of archaeal cells, leading to
the serendipitous discovery of a reversible,
clonal, tissue-like multicellular developmen-
tal program.

Uniaxial compression gives rise to clonal,
tissue-like multicellularity

To gain insights into the mechanobiology of ar-
chaeal cells, we performed confinement exper-
iments with the salt-loving Haloferax volcanii
(Hvo), leveraging its straightforward cultiva-
tion and genetics (10). First, we established a
baseline for mechanically unperturbed haloar-
chaeal cells trapped within ArcCell, a custom
microfluidic device (Fig. 1A and fig. S1A). Cells
growing in ArcCell showed cell morphologies
comparable to those in bulk liquid cultures,
indicating no mechanical stress (Fig. 1B, fig.
S1B, andmovie S1). Next, we imaged cells under
agarose pads, a standard technique for micro-
bial immobilization (Fig. 1C). Unlike in ArcCell,
agarose pads deformed cells within a single
generation (~2.5 hours) at the lowest agarose
concentrations, making pad immobilization
incompatible with prolonged imaging (fig. S1B
and movie S1). To quantify the compressive
forces deforming cells, we measured the pad
elasticity using dynamic mechanical analysis
(11). The storage moduli of 0.25 to 3.5% pads
revealed that resistance forces of ~10 kPa are
sufficient to deform Hvo (fig. S1C). These val-
ues suggest that Hvo cells may have visco-
elastic properties close to those of eukaryotic
cells, such as amoeba and mammalian cells,
but orders of magnitude lower than those of
most cell-walled organisms (12, 13).
Given the mechanical sensitivity of haloar-

chaeal cells under pads, we tested the responses

of Hvo to compressive forces above 100 kPa,
closer to forces experienced in their natural
habitat, such as the human gut and salt ponds
(14–16). Following compression under pads
with agarose concentrations of 1.5% and higher,
cells stopped dividing but continued to grow
(Fig. 1D, second panel). After ~12 hours, cellu-
larization occurred via simultaneous septa-
tion events (Fig. 1D, third panel), resulting in
epithelial-like monolayer structures (Fig. 1E
and movie S2). These tissue-like ensembles
resemble radial tessellation patterns in leaf
tissues and multicellular green algae (17, 18).
The morphological development before cellu-
larization also resembles the coenocytic phase
of chytrids and chicken embryogenesis, in
which cells multiply their nuclei without cell
division (19, 20). Time-lapse imaging of cells
expressing mNeonGreen-PCNA (DNA sliding
clamp) showed continuous replication during
development, supporting a coenocytic-like phase
preceding cellularization (Fig. 1D and movie S3).
Animal and plant cells often sense and ac-

tivate biochemical pathways in response to
surface curvatures and material properties
(21, 22). To test the influence of the pad’s stiff-
ness, we immobilized Hvo cells under and on
top of the same 2.5% agarose pad. As a result,
tissueswere observed exclusively under the pads
(fig. S2A), suggesting that stiffness alone is not
sufficient to induce multicellularity. Further-
more, cells compressedbydifferent bilayer “cake”
pad setups developed into tissue-like structures
only when under compression by at least one
stiff surface, ruling out a specific role of the cover-
slip other than providing a rigid surface for
compression (fig. S2, B and C). Finally, tissue
formation is independent of gravity (fig. S3A),
padmass, or thickness (fig. S3B) and consistent-
ly initiated at the same coenocytic area regard-
less of pad density (fig. S3C). These analogous
features suggest that archaeal tissue develop-
ment represents an evolved biological program
response to compression.
To determine whether cells within mult-

icellular structures retain their S-layer lattice,
we cryo-fixed cells from mechanically sheared
tissues and imaged individual cells by electron
cryotomography (cryo-ET) (fig. S4A). Conco-
mitantly with live-cell staining of glycoproteins
(fig. S4B), we concluded that archaeal tissues
preserve S-layer material in their intercellular
spaces.
Next, we explored the possibility that tissues

arise from cell compaction. Three-dimensional
(3D) imaging revealed extracellular spaces be-
tweenmost unicells but nonewithin tissues (Fig.
1F andmovie S4). To probe physical connectivity,
we used laser ablation to wound areas at the
center of the tissues. Following ablation, we
observed directional movement of cells toward
the wounds in tissues, but not in unicells, at
speeds of 0.62 ± 0.27 mm/min (Fig. 1G, fig. S4C,
and movie S5), comparable to those seen in
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wounded animal tissues, which can vary be-
tween 0.2 and 1.0 mm/min (23, 24). Because
archaea lack canonical cytoskeleton motors
such as myosin (25), the synchronous cell mi-
gration suggests that archaeal and animal
tissues have similar membrane elastic proper-
ties. We tested this idea by measuring the
retraction rates after ablating the cell envelope
in unicells and archaeal tissues, observing a
membrane recoil in archaeal tissues (0.42 ±
0.11 mm/s) (Fig. 1H and movie S6) similar to
those reported in animal tissues (~0.3 mm/s)
(26). The apparent higher membrane tension
in archaeal tissues compared to compacted uni-
cells (0.09 ± 0.05 mm/s) implies the presence of
junctional load-bearing structures, placing

archaeal tissues as a new class of prokaryotic
multicellularity, exhibitingmaterial properties
typical of eukaryotic tissues.

Archaeal tissues are widespread in
Haloarchaea and countercorrelate
with biofilm production

To understand the evolutionary diversity of
haloarchaeal tissues, we constructed a phylo-
genomic tree spanning 57 genera, represent-
ing all haloarchaeal orders (data S1), imaging
compressed cells from 52 species across 14 gen-
era (fig. S5). Regardless of cell size or growth
rate (fig. S6A), 61.6% of tested haloarchaeal
species formed tissues, with at least one in-
stance of tissue development or no multicellu-

larity in every tested genus. Among nonforming
tissue strains, we identified cases of cell death
(fig. S6B), shape deformation (fig. S6C), and
unnoticeable shape deformations under pads
(fig. S6D). We also observed three strains—
Htg. salina, Ncc. jeotgali, and Hka. jeotgali—
that exhibit aggregative multicellularity similar
to that of Methanosarcina, the only previous-
ly reported multicellular archaeon (fig. S6E)
(27). These results suggest that archaeal tissues
emerged early in haloarchaeal evolution and
remain dominant in the sampled diversity.
Next,we focusedon strains fromtheHaloferax

genus, in which Hfx. prahovense produced
large, deformed tissue structures, whereas Hfx.
mediterranei (Hmed) and Hfx. gibbonsii (Hgib)
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Fig. 1. Uniaxial compression triggers multicellular development in Hfx.
volcanii. (A) Schematic of cells trapped and (B) phase-contrast time-lapse images of
cells growing in the ArcCell microfluidic device. (C) Schematic of compressed cells
under 2.5% agarose pads. (D) Phase-contrast (top row) and spinning-disk confocal
(bottom row) time-lapse images of compressed cells across ~6 generations.
msfGFP-PCNA foci (blue) represent replication sites. (E) Stretched and compressed
areas comprise large monolayers of epithelia-like tissues. (F) 3D-SoRa microscopy

images of a tissue (left) and unicells (right). (G) Laser ablation of tissue regions.
False-color overlays of tissues before (magenta) and 10 min after (green)
ablation. Yellow areas indicate the ablated area. Directional motion from cells was
calculated from mean square displacement (MSD) curves. (H) Laser ablation
of cell membranes. False-colored overlays of tissues and cells before (magenta)
and after (green) ablation. White arrowheads indicate the membrane recoil
retraction. Unless specified, scale bars represent 2 mm.
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failed to develop, growing instead as stacked
colonies (Fig. 2A, fig. S7A, and movie S7). Al-
though all three taxa are closely related,Hmed
is placed on a long branch, suggesting an ex-
tended time for adaptation following the loss
or gain of genetic material. Under higher com-
pression (5% agarose pads), Hmed cells grew
larger thanHvo coenocytes until they split and
swarmed outward (Fig. 2B and movie S7). Be-
causeHmed’s swarming-like motion resembles
bacterial biofilm-dependent gliding (28), we
questioned whether their extracellular matrix
promoted survival under compression. Sup-
porting this hypothesis, relative biofilm was
at least twice as high inHmed as in otherHfx
strains (fig. S7B). However, it remains unclear
whether Hmed still hosts the (suppressed) ge-
netic pathways formulticellularity or if it com-
pletely lost one or more required components.
The diversification of tissue architecture sug-
gests a shared multicellularity origin with occa-
sional losses.
Despite sharingmany similar “weed-like” traits,

Hmed is still outcompeted in nature by other
haloarchaea (29). To test whetherHmed’s lack
of multicellularity affects its fitness, we com-
pressed cells under microfabricated pillars in-
tercalatedwith “relief” zones (Fig. 2C). This setup

allowed us to observe how these cells navigated
mechanical “escape room” challenges, mimick-
ing their natural habitat. Whereas Hvo cells
managed to propagate even with low initial cell
numbers, Hmed showed a 4.3-fold decrease in
viability compared toHvo under pillars (Fig. 2,
D and E, and movie S8). By contrast, Hvo tis-
sues showed only a 1.8-fold and 1.4-fold loss in
viability compared to unicells andHvo colonies
from agar plates, respectively (fig. S7C).
The survival rates between Hvo and Hmed

suggest that tissues can revert to unicells. To ob-
serve the transition to unicells, we shear-shocked
tissues by injecting liquid media under pads.
Cells detached from tissues and transitioned to
motile rods, swimming away from compression
zones (movie S9). Our findings suggest that
mechano-responsive multicellularity is an adap-
tive trait and likely beneficial in compressive
zones exceeding lethal thresholds in environ-
ments such as desiccated salt plates, animal
guts, and microbial biofilms (30).

Archaeal tissues undergo FtsZ-independent
cellularization, resulting in a radial symmetry
with distinct cell types

Although compression yielded tissues with
larger peripheral cells (Fig. 2D), cell size and

shape changes could result from uneven dis-
tribution of mechanical forces within the de-
vice instead of mechanosensation by specific
cells. Because specialized cell types are a hall-
mark of multicellularity (31), we character-
ized the cellular morphology and cell cycle in
different tissue regions. 3D-STED (stimulated
emission depletion) micrographs showed two
profiles: wider but shorter cells at the periphery
and taller cells at the center of tissues (Fig. 3A,
Movie S10). 3D-STED projections showed ir-
regular scutoid-like center cell shapes similar
to those stabilizing curved epithelia during em-
bryogenesis (32). From 3D outline segmented
masks, we observed variation in cell neigh-
borhoods across the scutoid regions, suggesting
a maximization of packing typical of animal
scutoids (Fig. 3B). On the basis of their radial
symmetry and position within the tissue, we
named tissue cells peripheral (Per) and scutoid
(Scu) cells (Fig. 3C).
Moreover, 3D-STED data suggest that Per

cells are not in contact with the pad surface,
indicating that their lower height is not a di-
rect consequence of compression. By contrast,
Scu cells are in physical contact with compres-
sion areas, suggesting that they could directly
respond to the mechanical compression from
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Fig. 2. Hfx. mediterranei does not form tissues under compression.
(A) Cladogram depicting evolutionary relationships between compressed
Haloferax species. Gray- and red-labeled species represent cells that form or do
not form tissues, respectively. Hfx. prahovense is marked with an asterisk as it
develops to considerably larger, deformed tissues. For a comprehensive phylogenetic
tree, see supplementary data S1. (B) Phase-contrast time-lapse images (left) of
Hmed growth under 3% (top) and 5% (bottom) agarose pads. (Right) SoRa

microscopy of Hmed growth after 24 hours under 3% agarose pads. (C) Cartoon
representation of microfabricated pillars used in the intermittent compression
experiments. (D) Phase-contrast time-lapse images of Hvo (top) and Hmed (bottom)
under micropillar devices. The 24-hour data point is represented as a magnified
inlet from the yellow area in the previous time point. (E) Viability of Hvo tissues
compared to Hmed cells under micropillars measured by colony formation unit. Hvo
and Hmed viabilities were normalized by their respective liquid cultures.
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loci (fig. S12C). This pattern suggests the ex-
istence of possible transferable islands re-
lated to the emergence of multicellularity. We
also observed an enrichment of proteins with
cytochrome-related and photosynthetic reac-
tion center (PRC) domains, which were shown
to have structural cell division roles (42, 43).
Hence, the aboveparalogs could represent tissue-
specific cell cycle factors.
From our gene candidate list, we focused on

four groups: cell surface, cytoskeleton and me-
chanosensing, signaling, and cell cycle (data S2).
Given the importance of actin in eukaryotic
tissue biogenesis, we investigated the role of
volactin (volA), theonly identified actinhomolog
inHvo (44), which is up-regulated ~1.6-fold in
tissues. Time-lapse imaging showed increased
volA-msfGFP signal during development, reach-
ing a steady state by the end of cellularization
(Fig. 5B and movie S14). By contrast, unicells
showed unaltered volA-msfGFP levels, as did
tissues expressing cytoplasmic msfGFP. More-
over, volactin polymers were less abundant

but highly dynamic in uncompressed Per cells
than in unicells and Scu cells (Fig. 5C andmovie
S15). VolA also displayed changes in structural
patterns, with cables aligning in coenocytes and
Scu cells (Fig. 5Dandmovie S16). Compressionof
DvolA cells resulted in shorter coenocytes than
the wild-type counterpart (Fig. 5E) and delayed
or stalled tissue maturation (Fig. 5F). Because
volA is implicated in regulating thedevelopment
of rod-shaped (motile) and disk-shaped (sessile)
cell types (44, 45), we propose that volactin may
mirror eukaryotic actin’s multifunctional roles
as a mechanosensing cytoskeleton and polarity
factor in tissues (46).
Comparative genomics leveraging of the dif-

ferences in tissue formation across Hfx spe-
cies showed substantial overrepresentation
of orthologous groups (orthogroups) related
to protein glycosylation, sugar metabolism,
and transport in presence or absence data-
sets among (i) Hvo and Hmed (fig. S12D and
data S3); (ii) 4Hfx species (fig. S12E and data
S4); and (iii) orthogroups enriched in species

that form tissues (data S5). Protein glycosyla-
tion has historically been studied in haloarchaea
for its role in mating and envelope biogenesis
(47). In eukaryotes, N-glycosylation is crucial
for cell identity, polarity, junctions, and adhe-
sion (48). To explore the role of N-glycosylation,
we labeled cells with ConA-Alexa488, a cell-
impermeable fluorescent lectin conjugate that
bindsmannose glycol groups. Although ConA-
Alexa488 did not stain unicells (fig. S13A), it
exhibited a radial localization at the outline of
Per cells (Fig. 5Gandmovie S17). To testwhether
patterns are formed by biofilm accumulation in
the extracellular matrix, we examined a DpibD
mutant, blocking all pili-dependent secretion
(49). We observed no significant differences in
ConA-Alexa488 localization between wild-type
and DpibD tissues (fig. S13A), indicating that
biofilm is not critical for cell junctions. Next,
we imaged tissues of different N-glycosylation
mutants, finding that DaglB is the only one to
disrupt ConA-Alexa488 halos, resulting in stain-
ing of the whole tissue surface (Fig. 5G and
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(A) Volcano plot overlays from RNA-seq datasets collected across develop-
mental stages and normalized by liquid unicellular cultures. Numbers in
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(B) Normalized fluorescence by cell area of volA-msfGFP and constitutively
expressed cytoplasmic msfGFP from confocal time-lapse images. (C) Epifluor-
escence micrograph of a false-colored tissue relative to volA-msfGFP
fluorescence (left) and dynamics of volA-msfGFP polymers represented by

kymographs (right) from Per and Scu regions. (D) 3D-SoRa projections of
representative cells expressing volA-msfGFP across developmental stages (left)
and volA cable angle measurements relative to the coverslip plane (right).
(E) Height measurements of wild-type and DvolA coenocytes from 3D-SoRa
projections. (F) Representative epifluorescence micrograph of a DvolA
cell stalled at cellularization. (G) 3D-confocal projections of cell surface
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by ConA-Alexa488. Scale bars, 2 mm.
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fig. S13B). Therefore, we propose that AglB, the
main oligosaccharyltransferase required for S-
layer N-glycosylation (47), acts as an inhibi-
tor of N-glycosylation in Scu cells, directing
tissue cell-surfacepolarity. Theapparentdichot-
omous nature of AglB in archaeal tissues adds to
the list of cell surface N-glycosylation functions
such as morphogenesis and mating.
The discovery of clonal, tissue-like multicel-

lularity in archaea highlights the potential of
archaeal mechanobiology to shed light on the
emergence of complexity in nature. Neverthe-
less, this is not the first developmental pro-
gram identified in haloarchaea, joining the
rod-shaped (motile) and disk-shaped (sessile)
shape-shift transitions (45). These cell types
are connected by volactin, which is also re-
quired for disk formation (44). The coordinated
alignment of volactin cables indicates that actin
cables might sense membrane curvature or
mechanically support coenocytic and Scu cells.
Although these scenarios are not mutually
exclusive, volA’s roles in different developmental
programs, combined with the FtsZ-independent
tissue cellularization, underscore a develop-
mental transition from tubulin-dependent to
actin-dependent cellularization (25, 46).
An integrative evo-devo mechanobiology ap-

proach offers a framework for understanding
the link betweenmicrobial biofilms andmem-
brane homeostasis, which may regulate the
transition between different multicellularity
modalities. Our findings also suggest the need
to revisit past evidence for the origin of eu-
karyotic multicellularity, such as fossils iden-
tified as holozoans (50). On the basis of their
size and absence of definitive eukaryotic fea-
tures, these fossils may represent ancestors
of archaeal tissues. Future studies should un-
cover the biochemical and structural nature of
archaeal cell junctions and expand the pres-
ence of archaeal tissues in phyla evolution-
arily closer to eukaryotes, such as the Asgard
archaea.
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