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Abstract.—Resolving phylogenetic relationships among taxa remains a challenge in the era of big data due to the presence 
of genetic admixture in a wide range of organisms. Rapidly developing sequencing technologies and statistical tests enable 
evolutionary relationships to be disentangled at a genome-wide level, yet many of these tests are computationally intensive 
and rely on phased genotypes, large sample sizes, restricted phylogenetic topologies, or hypothesis testing. To overcome 
these difficulties, we developed a deep learning-based approach, named ERICA, for inferring genome-wide evolutionary 
relationships and local introgressed regions from sequence data. ERICA accepts sequence alignments of both population 
genomic data and multiple genome assemblies, and efficiently identifies discordant genealogy patterns and exchanged 
regions across genomes when compared with other methods. We further tested ERICA using real population genomic data 
from Heliconius butterflies that have undergone adaptive radiation and frequent hybridization. Finally, we applied ERICA 
to characterize hybridization and introgression in wild and cultivated rice, revealing the important role of introgression in 
rice domestication and adaptation. Taken together, our findings demonstrate that ERICA provides an effective method for 
teasing apart evolutionary relationships using whole genome data, which can ultimately facilitate evolutionary studies on 
hybridization and introgression. [Convolutional neural network; deep learning; evolutionary relationship; hybridization; 
introgression.]

Resolving the relationships among taxa is one of the 
fundamental tasks in evolutionary biology. The phy-
logenetic tree model with the assumption of strict 
bifurcation has been widely used for representing spe-
cies’ evolutionary history, allowing occasional discor-
dance led by incomplete lineage sorting (ILS) or gene 
flow after divergence (Pamilo and Nei 1988; Currat 
et al. 2008). Accordingly, several computational algo-
rithms using genetic distance, maximum likelihood, or 
Bayesian methods have been applied to phylogenetic 
reconstruction based on alignments of orthologous 
genes or regions (Yang and Rannala 2012). However, 
a growing body of literature suggests that genomic 
signatures of hybridization, the process of interbreed-
ing, may be more common than expected and have 
significantly shaped the tree of life (Rieseberg 2019). 
The complex roles of hybridization, which may either 
accelerate or hinder speciation, or fuel adaptation by 
providing additional variability relative to new muta-
tions and standing variations, have attracted consid-
erable attention from evolutionary biologists (Arnold 
2004; Mallet 2005; Hedrick 2013). Thus, assessing the 
complex relationships among species with widespread 

genetic admixture remains a challenging task, which 
leads to the assumption that strict divergence does not 
satisfactorily represent the full evolutionary history of 
an organism.

Accompanying rapid developments in sequencing 
technologies, a variety of algorithms have been devel-
oped and applied to whole genome sequencing data for 
demography inference, and genome-wide patterns of 
admixture have been characterized in different organ-
isms, such as beneficial alleles shared between crops 
and wild relatives (Stewart et al. 2003), adaptive intro-
gression between archaic and modern humans (Racimo 
et al. 2015) and pervasive hybridization during diversi-
fication of Heliconius butterflies (Edelman et al. 2019). To 
summarize, these algorithms fall into four categories: 1) 
depicting an overall demographic pattern of admixture 
instead of capturing local patterns by testing coales-
cent models using maximum likelihood or Bayesian 
methods such as G-PhoCS (Gronau et al. 2011), Treemix 
(Pickrell and Pritchard 2012) and PhyloNet (Than et al. 
2008); 2) comparing scales of linkage disequilibrium by 
detecting the structure of haplotypes from fine-scale 
and sufficient genomic data such as HAPMIX (Price 
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et al. 2009), ELAI (Guan 2014), S* (Plagnol and Wall 
2006), and Sprime (Browning et al. 2018); 3) perform-
ing window-based scans and describing relationships 
quantitatively among focal taxa according to the allele 
frequencies of given patterns, for example, Patterson’s 
D-statistic (Durand et al. 2011), the fd statistic (Martin 
et al. 2015), and the symmetry five-taxon analysis, that 
is, DFOIL (Pease and Hahn 2015). In comparison with 
model testing and haplotype inference, these statisti-
cal tests are less computationally intensive, but their 
applications are limited, and they are only suitable for 
samples with specific phylogenetic topologies. In addi-
tion, usage of the allele frequencies of biallelic single 
nucleotide polymorphism (SNP) sites leads to omis-
sion of SNP positions and other types of variations in 
sequences, which are also meaningful for phylogenetic 
estimation. 4) Combining multiple genomic features 
using different machine learning models, including 
conditional random fields (CRF) (Sankararaman et al. 
2014), hidden Markov models (HMMs) (Skov et al. 
2018), and Extra-Trees classifiers (Schrider et al. 2018). 
Model training with these methods relies on appropri-
ate and species-specific demographic models, which 
generally limits their applications to those involving 
less well-studied taxa with unknown population histo-
ries. Therefore, we aimed to develop a method of infer-
ring evolutionary history and gene flow strength with 
greater accuracy and less computational complexity in 
comparison with existing methods, while also requir-
ing less prior knowledge. Specifically, the ideal method 
we expect should yield performance improvements 
in the following aspects. First, it should allow direct 
processing of sequence data instead of requiring pre-
defined population genetic statistics or inferred gene 
trees to reduce information loss in data pre-processing. 
Second, it should be capable of resolving local introgres-
sion signals in genomes with heterogeneous gene flow, 
which cannot be identified with demography modeling 
approaches. Third, it should be applicable to model and 
non-model systems, and it should be robust across taxa. 
Finally, it should have low computational complexity 
and should be capable of handling genome-scale data 
in an acceptable amount of time.

Machine learning, especially deep learning, has pro-
vided a powerful framework for feature extraction and 
classification. With rapid increases in computing power, 
deep learning has been widely used in computer vision, 
speech recognition, natural language processing and 
bioinformatics applications, such as medical image 
diagnoses and sequence feature recognition (Eraslan 
et al. 2019). Recently, the remarkable potential of deep 
learning algorithms for solving population genetic 
problems with high accuracy has been demonstrated 
by studies combining deep learning with Approximate 
Bayesian Computation to infer human history (Mondal 
et al. 2019), detecting selective sweep and estimating 
recombination rates (Flagel et al. 2019), and inferring 
four-taxon phylogenetic topologies (Suvorov et al. 2020; 
Zou et al. 2020). Unlike conventional population genetic 
statistics methods, deep learning-based approaches can 

directly extract features from high-dimensional data, 
which is an advantageous characteristic for methods 
used for analyses of genome-wide sequencing data. 
Some recent works have applied convolutional neural 
networks to detect local introgression segments in sister 
Drosophila species (Flagel et al. 2019), as well as between 
ancient and modern humans (Gower et al. 2021). These 
studies show that deep learning-based algorithms can 
effectively detect genomic admixture and introgression 
signals, but practical applications still have some lim-
itations. First, the need to obtain detailed demographic 
history and gene flow information for the target species 
remains a challenge for species that are not well char-
acterized. Also, the effects of differences between the 
demographic scenarios and true models on algorithm 
performance have not been comprehensively tested. 
Second, each specific demographic model requires 
sequence simulation and model training, which both 
consume computational resources. Third, while clas-
sification tasks are used for determining introgres-
sion regions, this method may limit the ability of deep 
learning-based algorithms to resolve more complex 
evolutionary histories, such as those involving multi-
ple introgressions between different donor-recipient 
lineages.

Considering these issues, we report our development 
of a new pipeline for the inference of complex evolu-
tionary history using convolutional neural networks 
(CNNs), named ERICA (Evolutionary Relationship 
Inference using a CNN-based Approach). ERICA 
accepts sequence alignments of both population 
genomic data and multiple genome assemblies, and 
can evaluate genome-wide evolutionary relationships, 
as well as local signatures of introgression. Unlike pre-
vious deep learning methods, species-specific demo-
graphic scenarios are not used in model training; 
therefore ERICA is applicable to different taxa, includ-
ing species lacking detailed population histories. We 
report the performance of ERICA using both simulated 
and real genomic data in Heliconius butterflies, a clas-
sic model system with adaptive radiation and frequent 
interspecific hybridization. Notably, ERICA showed 
better performance than other methods in analyses 
of both simulated and real genomic data. Therefore, 
ERICA was employed to explore adaptive introgres-
sion between wild and domesticated rice, another clas-
sic model system with a history of intensive artificial 
selection and frequent hybridization. We used ERICA 
to characterize putative signatures of introgression 
and identify candidate loci of adaptive introgression 
between Asian cultivated rice O. sativa ssp. japonica 
and other tropical accessions. Our results suggest that 
introgression played a significant role in rice domesti-
cation and provide a list of genetic loci related to rice 
radiation and adaptation to fuel future agricultural 
research. In summary, ERICA provides an effective 
method for teasing apart evolutionary relationships 
using whole genome data, which has the potential to 
facilitate evolutionary studies involving hybridization 
and introgression.
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Materials And Methods

Design Principles of ERICA

Detecting introgression based on topological discor-
dance.—We aimed to establish a deep learning frame-
work for inferring evolutionary relationships and 
identifying local introgression signals directly from 
sequence data. In previous studies, the windows with 
and without gene flow were distinguished using clas-
sification tasks (Flagel et al. 2019; Gower et al. 2021). 
However, when more than two species were consid-
ered, there were multiple potential gene flow events 
and it was difficult to set a category for each. In such 
cases, the discordance between the gene trees and the 
species tree provides a way to identify introgressed 
regions. Thus, we first focused on evaluating evolu-
tionary relationships among taxa and then scanned 
the genome for regions supporting alternative topolo-
gies. Since the number of possible topologies increases 
double-factorially with taxa number (Felsenstein 1978), 
and is, therefore, directly related to computational com-
plexity, we included cases with four and five taxa in the 
analysis. Compared with the four-taxon case, the five-
taxon model produced more possible donor–receptor 
gene flow pairs, and the direction of some of these pairs 
was determined. We built two networks to quantify the 
relationships of four and five taxa from sequence align-
ments (Fig. 1). Since the relationships inferred by any 
phylogenetic analysis are hypothesized and approx-
imated, they may differ from the real relationships; 
therefore, we trained the two models using simulated 
datasets generated according to predefined evolution-
ary scenarios. Data generation and encoding, network 
structure, and model training are described in the fol-
lowing sections.

Phylogenetic relationship encoding for CNN.—Given a 
four-taxon dataset including three ingroup taxa P1, P2, 
and P3, and one outgroup taxon O, there are three pos-
sible rooted topologies: (((P1, P2), P3), O), (((P1, P3), P2), 
O), and (((P2, P3), P1), O). In previous studies, the topo-
logical structures of taxon were classified into three cat-
egories (Suvorov et al. 2020; Zou et al. 2020). However, 
due to the effects of recombination and population 
structure, this classification method may not fully rep-
resent the evolutionary relationships among taxa. Thus, 
we adopted a multi-dimensional vector to represent the 
relative abundance of each possible rooted tree topol-
ogy (Supplementary Fig. S1a,b), which was derived 
from quartet sampling (Estabrook et al. 1985) and 
topology weighting (Martin and Van Belleghem 2017) 
methods. For example, the vector (0.5, 0, 0.5) was used 
to label a window containing two segments, with one 
supporting (((P1, P2), P3), O) and the other supporting 
(((P2, P3), P1), O), which may represent a recombina-
tion breakpoint of two different demographic histories 
(Supplementary Fig. S1c). When the focal taxon was not 
monophyletic, the complicated topological structure of 
each sample was considered. For instance, in the case 
in which two samples of taxon P2 clustered with P1 

and one individual clustered with P3, the vector (0.67, 
0, 0.33) was used to represent the relationships of the 
three focal taxa (Supplementary Fig. S1d). Likewise, a 
fifteen-dimensional vector satisfying the sum-to-one 
constraint and corresponding to the 15 possible rooted 
topological structures was used to label the datasets of 
the five-taxon model (Supplementary Fig. S1a). This 
labeling strategy efficiently records information regard-
ing real relationships, especially for genomic regions 
with different evolutionary histories or non-mono-
phyletic sample groups, allowing the CNN models to 
evaluate both reference genome assemblies and pop-
ulation-level genetic datasets. The actual phylogenies 
generated by the coalescent simulator represented 
more complex scenarios and had topological structures 
more complex than those of the above examples. We, 
therefore, quantified the proportion of each topology 
for each segment lacking recombination with a topol-
ogy weighting method (Martin and Van Belleghem 
2017), which provided a quantitative measurement of 
the fractions of unique subtrees matching given topol-
ogies, and the mean values for all segments were used 
as the data labels.

Data simulation for CNN model training.—In previous 
studies, specific evolutionary scenarios of the focal spe-
cies (e.g., Drosophila sister species (Schrider et al. 2018) 
and ancient and modern humans (Gower et al. 2021)) 
have been used in data simulation and model training. 
Thus, the CNN models needed to be retrained before 
being applied to new taxa, and the application to taxa 
without detailed population histories was limited. To 
address complex evolutionary histories and enhance 
the generalization ability of the CNN models, instead 
of using species-specific data for model training, we 
generated a training dataset covering scenarios with 
varying degrees of ILS and gene flow, including differ-
ent genealogies, various divergence times, and intro-
gressions between non-sister species (Supplementary 
Fig. S2).

We generated multiple sequence alignments (MSAs) 
for training and testing the CNN models using the 
coalescent simulator ms (Hudson 2002) and Seq-Gen 
(Rambaut and Grassly 1997). For the training and test 
datasets, the MSA data were 5000 bp in length and 
contained eight haplotypes per taxon. According to 
the simulation studies reported in other introgression 
detection methods (Supplementary Table S1), we used 
a population size (N) of 1 M and a recombination rate 
(4Nr) of 0.01, given the per site per generation rate (r) of 
2.5 × 10–9 (0.25 cM/Mb).

Demographic scenarios representing all possible 
topologies were simulated, with species divergence 
times ranging from 0.2 to 2.7, in units of 4N generations. 
Multiple scenarios of possible introgressions between 
non-sister species were also included to generate com-
plex population structures and enhance the generaliz-
ability of the model (Supplementary Fig. S2a).

Example commands for ms were: ms 32 1 -I 4 8 8 8 
8 -ej t12 2 1 -ej t123 3 1 -ej 3 4 1 -r 50 5000 -T (for data 
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Figure 1.  ERICA design principles, model architecture, and training. a) The flow diagram of ERICA model training, testing, and applying 
on simulated and real data. In brief, different simulated datasets were used to train the CNN, and the accuracy of topology inference and 
introgression detection was evaluated. The trained models were used in the analyses of real genomic data. b) Illustration of the main part of 
the ERICA pipeline. The multiple sequence alignment (MSA) data were first split into 5-kb windows and then encoded in a one-hot form. A 
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without admixture); and ms 32 1 -I 4 8 8 8 8 -ej t12 2 1 
-ej t123 3 1 -ej 3 4 1 -es tGF 2 0.5 -ej tGF 5 3 -r 50 5000 -T 
(for scenarios with instantaneous gene flow from P3 to 
P2). t12, t123, and tGF indicated the split time of (P1, P2), 
the split time of (P1, P2, P3), and the time of gene flow, 
respectively. Full commands and parameters are shown 
in Supplementary Table S2.

The gene trees of the sampled haplotypes were 
recorded with the “-T” option, and sequence data were 
simulated using Seq-Gen based on the genealogies, 
with the Hasegawa–Kishino–Yano (HKY) nucleotide 
substitution model. The branch length scaling factor 
was set to 0.01 (4Nμ), with a per site per generation 
substitution rate (μ) of 2.5 × 10–9. In summary, a total 
of 120,600 MSAs (19.3 Gb) and 6030 MSAs (0.97 Gb) 
consisting of data representing 58,125 evolutionary sce-
narios (Supplementary Table S2) were generated for the 
four-taxon model as the training and test datasets (D1), 
respectively, whereas a total of 74,100 MSAs (14.8 Gb) 
and 7410 MSAs (1.48 Gb) representing 57,783 scenarios 
were generated as the training and test datasets (D1), 
respectively, for the five-taxon model (Supplementary 
Fig. S2b).

Sequence encoding, network architectures, and model train-
ing.—Different deep learning frameworks use different 
encoding models to process sequence data. For exam-
ple, for the coding model used in genomatnn, Gower et 
al. (2021) divided a sequence into a fixed number of bins 
and counted the number of minor alleles in each bin, 
which solved the problem of genomic windows with 
different numbers of segregating sites. However, after 
compressing the information, this coding model can-
not distinguish variations at different positions within 
a bin. For the coding model used in ERICA, we chose 
to retain the genotype information for every position in 
a sequence alignment, including sites with or without 
variations, which also maintained a fixed dimension 
for the input data. When referring to specific encoding 
methods, they also included binary encoding (i.e., “0” 
was assigned to the ancestral allele and “1” was assigned 
to the derived allele) (Flagel et al. 2019), label encoding 
(with a different integer value assigned to each nucleo-
tide) (Suvorov et al. 2020), and one-hot encoding (Zou 
et al. 2020). Considering that binary encoding cannot 
handle data with multi-allelic and missing sites, and 
the distances between the four bases of A, T, C, and G 
were not equal in the label encoding, we used a one-hot 
format to encode the nucleotides of an input MSA, in 
which G, T, A, and C were encoded as (1, 0, 0, 0), (0, 1, 
0, 0), (0, 0, 1, 0), and (0, 0, 0, 1), respectively, whereas the 

gap (“–”) or missing data (“N”) were encoded as (0, 0, 0, 
0). For the input MSA used in ERICA, sequences of four 
or five populations were aligned from top to bottom, 
with eight haplotypes per population of length 5000 
bp. Thus, the input MSA was converted into a 2-dimen-
sional numerical matrix with dimensions of 128 × 5000 
(four-taxon model) or 160 × 5000 (five-taxon model). 
Each column corresponded to a nucleotide position in 
the alignment, and every four rows corresponded to 
one haplotype.

We implemented our CNN models in Python using 
TensorFlow. Multiple dense blocks and residual blocks 
were combined to build deep neural networks and 
extract features. Residual Networks (ResNet) were 
designed for image recognition and have been widely 
used in deep neural networks. The depth is crucially 
important for model accuracy, and problems such as 
vanishing/exploding gradients and model degradation 
limit the depth increase. The ResNet uses residual func-
tions for parameter learning by adding identity short-
cut connections, which are easy to optimize and show 
greater accuracy than that achieved by simply stacking 
convolutional layers (He et al. 2016). Another architec-
ture, Dense Convolutional Networks (DenseNet), alle-
viates the vanishing gradient problem and reduces the  
number of parameters by directly connecting all  
the layers in one dense block, such that each layer uses 
the feature maps of all previous layers as input (Huang 
et al. 2017). We employed both residual blocks and 
dense blocks to train deeper, more accurate, and more 
efficient networks. Eight dense blocks and seven resid-
ual blocks were connected one after the other in the 
four-taxon model (Fig. 1c and e–f, Supplementary Fig. 
S3a). Similarly, the five-taxon model used an alternately 
stacked formation of nine dense blocks and eight resid-
ual blocks (Fig. 1d and Supplementary Fig. S3b). The 
high-dimensional features were finally flattened and 
transformed into one dimension. After the generation 
of two fully connected layers using SoftMax activation, 
the output of the models included either 3 or 15 scores 
that added up to one, corresponding to the proportion 
of each topology.

The total datasets were first randomly split into the 
training (90%) and validation sets (10%), the latter of 
which was not used for parameter training. The training 
set was randomly shuffled for each epoch and split into 
batches of sizes 8 and 10 for the four-taxon and five-taxon 
models, respectively. The batches were used in turn as 
input for the networks, and the loss was calculated as the 
mean absolute error between network outputs and labels. 
The parameters were optimized and updated through 

numeric vector with the shape of (128, 5000, 1) or (160, 5000, 1) was used as the input of the CNN models, which possessed both genotype and 
positional information. The output was a three-dimensional or fifteen-dimensional vector, which represented the proportion of each possible 
topology and added up to one. Data post-processing included calculating the genome-wide mean value, and the major topology provided 
a likely species tree. The local introgressed regions and directions of gene flow were identified based on the high support of alternative 
topologies, which was greater than the score caused by ILS. The architectures of used CNNs are shown for the four-taxon model c) and five-
taxon model d). The architectures of the included Dense block e) and Residual block f) are also illustrated. In the schematic of the MSA, minor 
alleles are highlighted in different colors, with pink for “A,” blue for “C,” yellow for “G,” and green for “T.”
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gradient descent and backpropagation with the Adam 
optimizer to minimize loss. The learning rate was set to 
0.0001. Model training was stopped after 30,000 iterations 
(approximately two epochs and five epochs for the four-
taxon and five-taxon models, respectively). Models were 
trained on two NVIDIA Tesla V100 SXM2 32GB GPUs, 
which took approximately 3.7 h and 6 h for the two mod-
els, respectively. The loss over time was visualized using 
TensorBoard, and it was synchronously reduced in both 
the training and validation datasets (Supplementary 
Fig. S3c,d), indicating that the CNN models successfully 
extracted features of different topologies. The trained 
models were used in the following analyses of simulated 
and real genomic data to predict the proportion of each 
possible topology from sequence alignments.

Comparing the Performance of ERICA with Other 
Approaches

Model evaluation for topology inference using simulated data-
sets.—We compared the performance of ERICA with that 
of the phylogenetic method using the test dataset (D1). 
We further evaluated its generalizability using several test 
datasets with different recombination rates (D2), substi-
tution rates (D3), population sizes (D4), and sample sizes 
(D5), which were generated under the same demographic 
scenarios as D1 (Supplementary Table S3). For dataset D5, 
1–8 haplotypes were sampled for each taxon during data 
simulation. The sequences were then randomly resam-
pled to eight haplotypes per taxon to fit the limitation of 
input dimensions in ERICA prediction. In addition, due 
to the presence of sequencing errors or missing sites in 
the real genomic data, we also introduced those into the 
simulations (test datasets D6 and D7). For each sampled 
haplotype, we randomly selected a set of positions whose 
total number was the product of the sequence length and 
the preset error rate. The genotype at each position was 
randomly changed to A, T, C, or G to simulate a sequenc-
ing error (with the exception of the original base) or to N 
for a missing site. The proportion of each topology was 
predicted for the test datasets and compared with the 
data labels. The difference was calculated in two forms: 
the mean absolute error (MAE) and the double-scaled 
Euclidean distance.

The MAE was calculated as follows:

MAE =
1
n

n∑
i=1

|v̂i − vi| ,

where n is the number of topologies (i.e., 3 for the 
four-taxon model and 15 for the five-taxon model), vi 
is the true value for topology i, and v̂i is the estimated 
value of ERICA for topology i.

The double-scaled Euclidean distance, which was 
used by Martin and Van Belleghem (2017), was calcu-
lated as follows:

Distance =

√∑n
i=1

(v̂i−vi)2

max(1−vi,vi)2√
(n− 1)

.

The difference between the estimated and true values 
was scaled using the maximum squared discrepancy 
for each variable. Since the variables had the sum-to-
one restriction and thus were non-independent, (n–1) 
was used as the degree of freedom.

For the window-tree-based topology weighting 
method, maximum-likelihood trees were constructed 
using RAxML (Stamatakis 2014). As the accuracy of 
tree inference was affected by the numbers of SNPs and 
the recombination rates (Martin and Van Belleghem 
2017), we used different window sizes to minimize the 
error. Topology weights were computed from these 
trees based on the Twisst pipeline (Martin and Van 
Belleghem 2017). MAEs and Euclidean distances were 
calculated between inferred weights and the data labels 
according to the equation described above. The window 
size of 500 bp (which had 75 SNPs on average) had the 
lowest error rate for the test dataset D1 (Supplementary 
Fig. S4); thus this parameter was used in subsequent 
analyses.

Model evaluation for introgression detection using simulated 
datasets.—For the comparison of ERICA with allele-fre-
quency-based approaches, Patterson’s D-statistic and fd 
were employed to examine the signatures of introgres-
sion for four-taxon cases. For cases with one sequence 
per taxon, the D-statistic compares the phylogenetic 
distribution by weighting the binary counts of derived 
alleles supporting either an ABBA or BABA topol-
ogy (Green et al. 2010). For cases with more than one 
sequence per taxon, allele frequencies are used instead 
of binary counts (Durand et al. 2011). Similarly, fd is a 
modified version of the f-statistic that was originally 
developed to estimate the admixture fraction and has 
been shown to be less affected by low effective popu-
lation size in comparison with the D-statistic (Martin et 
al. 2015). Both D-statistic and fd calculations were con-
ducted with test dataset D1 using ABBABABAwindows.
py (Martin et al. 2015), with the assumption that P1 and 
P2 are sister species.

Considering that the weight of topology A in the phy-
logenetic method and the proportion of topology A are 
consistent with the null hypothesis of the ABBA–BABA 
test, while the weights/ERICA probabilities of alterna-
tive topologies C and B are related to the expected fre-
quencies of ABBA and BABA sites, we calculated the 
relative difference between the probabilities of C and B 
using the following formula for the true values:

v3 − v2
v3 + v2

,

and the following formula for the estimated values:

v̂3 − v̂2
v̂3 + v̂2

.

The calculated values were used for comparisons 
with D and fd statistics. Considering that the propor-
tions have been normalized on a scale of 0 to 1, we also 
tested the absolute difference between two topologies, 
that is, the numerator of the above equations.
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Since test dataset D1 contained complex demo-
graphic models, we also simulated sequences under 
scenarios of an instant admixture event with different 
species split times, gene flow times, and proportions of 
introgression.

The command line inputs for the ms simulations 
were:

For the scenario with gene flow from P3 to P2: ms 32 
1 -I 4 8 8 8 8 -ej t12 2 1 -ej t123 3 1 -ej tR 4 1 -es tGF 2 1-f -ej tGF 
5 3 -r 50 5000 -T.

For the scenario with gene flow from P2 to P3: ms 32 
1 -I 4 8 8 8 8 -ej t12 2 1 -ej t123 3 1 -ej tR 4 1 -es tGF 3 1-f -ej tGF 
5 2 -r 50 5000 -T.

In these input strings, t12, t123, and tR indicated the split 
times between species and were set to (1, 2, 3), (0.5, 1, 
1.5), and (0.1, 0.2, 0.3) for test datasets D8, D9, and D10, 
respectively. tGF indicated the time of gene flow, ranging 
from 10% to 90% of t12. f indicated the admixture frac-
tion, ranging from 0 to 1 with a step size of 0.1. Other 
parameters were the same as those used for test dataset 
D1.

Moreover, we also evaluated the performance of 
ERICA for adaptive introgression. As the ms simulator 
did not support dataset modeling with selection, data-
sets with scenarios of selection were simulated using 
msms (Ewing and Hermisson 2010). Four evolutionary 
scenarios were generated. The “Null model” scenario 
had the topology structure of (((P1, P2), P3), O) for the 
four-taxon case without migration or selection. The 
“Selective sweep” scenario included population-spe-
cific selection. The “Neutral introgression” scenario had 
continuous gene flow with a variety of migration rates, 
and the “Adaptive introgression” scenario included a 
positive selection of introgressed segments.

Some example command lines were:
“Null model”: msms -ms 32 1 -I 4 8 8 8 8 -ej t12 2 1 -ej 

t123 3 1 -ej tR 4 1 -r 4Nr × L L -T (t12, t123, and tR indicated 
the split time of P1 and P2, the split time of (P1, P2) and 
P3, and the time of the root, respectively. L indicated the 
window size, and r was set to 2.5 × 10–9).

“Selective sweep” (in P2): msms -ms 32 1 -I 4 8 8 8 8 
-ej t12 2 1 -ej t123 3 1 -ej tR 4 1 -r 4Nr × L L -Sp 0.5 -SI 0.5 
× t12 4 0 0 0 0 -Smu 0.01 -Sc 0 2 2 × 0.001 × N 2 × 0.001 
× N 0 -N N -T. The time when selection started was set 
to 0.5 × t12, and the selection coefficient (s) was set to 
0.001, resulting in a selection strength of 2 × 0.001 × N 
for homozygote and heterozygote genotypes in P2.

“Neutral introgression” (from P3 to P2): msms -ms 32 
1 -I 4 8 8 8 8 -dej t12 2 1 -ej t123 3 1 -ej tR 4 1 -m 2 3 (migra-
tion rates) -r 4Nr × L L -T. Migration rates were set to 
0.05, 0.1, 0.5, 1, and 5, in units of 4Nm, where m was the 
fraction of migrants per generation.

“Adaptive introgression” (from P3 to P2): msms -ms 
32 1 -I 4 8 8 8 8 -ej t12 2 1 -ej t123 3 1 -ej tR 4 1 -m 2 3 (migra-
tion rates) -r 4Nr × L L -SAA 2 × 0.001 × N -SAa 2 × 0.001 
× N -Sp 0.5 -SI 0.5 × t12 4 0 0 1 0 -N N -T.

We also simulated scenarios with gene flow in the 
opposite direction. For test dataset D11, t12, t123, and tR 
were set to 1, 2, and 3, respectively, N was set to 1 M, and 
L was set to 5000. We also used different species split 

times (0.5, 1, and 1.5 for D12; 0.1, 0.2, and 0.3 for D13), 
population sizes (0.5 M for D14, 0.1 M for D15), and 
window sizes (50-kb for both D16 and D17) to obtain 
more comprehensive results. In addition, a sequencing 
error rate of 2% (D18) and a missing site rate of 10% 
(D19) were incorporated, with other parameters the 
same as those of D11.

For the ERICA models, a window with a topologi-
cal proportion greater than a preset threshold indicates 
the presence of gene flow. The threshold is set to the 
topological proportion of a false positive rate (FPR) 
of less than 5% for a neutral, non-introgressed sim-
ulated dataset. Note that this rule was not applied to 
the topology of the species tree. As there were multiple 
possible directions of gene flow, only the topology cor-
responding to the given gene flow was identified as a 
true positive signal, for example, topo C for gene flow 
between P2 and P3. The ERICA pipeline can be found 
at http://erica.cibr.ac.cn/ and includes multiple steps, 
such as data pre-processing, evaluating evolutionary 
relationships, post-processing, and visualization of the 
results. For D and fd statistics, Z-tests were performed to 
determine the potential introgression regions, and the 
standard deviations were calculated using the moving 
block bootstrap method. As with the ERICA models, all 
windows that significantly deviated from 0 (P value < 
0.05) were identified as false positive signals, while only 
gene flow between P2 and P3 (D/fd > 0) was recognized 
as a true positive signal.

Sprime (Browning et al. 2018) and IBDmix (Chen et 
al. 2020) are two other well-known introgression detec-
tion methods, which were initially designed to study 
admixture between modern and ancient humans. 
Sprime was developed from the S* algorithm (Plagnol 
and Wall 2006), which analyzes patterns of linkage 
disequilibrium (LD), while IBDmix is based on the 
probability of identity by descent (IBD). We also used 
Sprime and IBDmix to detect gene flow in our datasets. 
Specifically, as Sprime needs a closely related popula-
tion without admixture, only the data with gene flow 
from P3 to P2 were used in the analysis. Therefore, 
sequence variations of P1 and P2 were used as the out-
group and the introgression recipient, respectively, with 
the recombination rate and substitution rate set accord-
ing to the simulation parameters. Given that IBDmix 
was designed to detect gene flow between modern and 
archaic humans, we treated the recipient population as 
the modern samples, and since IBDmix only supports 
one archaic sample, we randomly selected one sam-
ple from the donor populations. The error rate of the 
data was set to 0, except for the test with a sequence 
error rate of 0.02. Sprime and IBDmix were applied for 
each window, and each window with at least one seg-
ment with a Sprime/LOD score greater than the preset 
threshold was recognized as a positive signal.

DFOIL is an extension of the D-statistic that is designed 
for a symmetric five-taxon model (Pease and Hahn 
2015). The DFOIL test contains four statistics using the 
counts of biallelic sites supporting given patterns and 
infers introgression events from the significance of each 
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DFOIL component. There are eight possible introgres-
sion patterns among current populations, and each of 
them can lead to a discordant and unique genealogy. 
For example, under an assumption of a null model 
with (((P1, P2), (P3, P4)), O), the probability of topol-
ogy D ((((P2, P3), P4), P1), O) increases with introgres-
sion patterns from P3 to P2, and an excess of topology 
C ((((P2, P3), P1), P4), O) is observed when the direc-
tions are opposite. Therefore, the ERICA results can be 
used to determine the direction of gene flow and can be 
compared with the results of the DFOIL test. Test data-
sets containing a pair of introgression events between 
P2 and P3 were used for model evaluation, and other 
introgression events should show the same tendency 
according to the topological symmetry. DFOIL tests were 
conducted using fasta2dfoil.py and dfoil.py (Pease and 
Hahn 2015), with one individual sampled from each 
population, the true negative windows having an intro-
gression type of “none,” and the true positive windows 
having an introgression type of simulated gene flow 
(“32” or “23”). The other algorithms were used in the 
same way as the four-taxon case.

Model evaluation using human demographic scenarios.—We 
also compared ERICA with another deep learning-based 
approach, genomatnn, which was designed primarily 
to detect adaptive introgression in the human genome 
(Gower et al. 2021), and we followed its workflow for 
data simulation and model training. In brief, we used 
the same demographic scenarios described by Gower 
et al. (2021), with scenario A simulating the gene flow 
from Neanderthal to Europeans and scenario B simu-
lating the gene flow from Denisovans to Melanesians. 
An African population was also sampled as a sister 
taxon of the recipient population. The genealogies and 
genotype information were generated using the SLiM 
simulator (Haller and Messer 2019) under the stdpop-
sim framework (Adrion et al. 2020). We first simulated 
datasets using the same parameters as the original 
study and evaluated them with the pre-trained CNNs 
from the genomatnn software (“Nea_to_CEU_af-0.25” 
and “Den_to_Melanesian_af-0.25” from https://
github.com/grahamgower/genomatnn). Since more 
individuals were sampled in the pre-trained CNNs of 
genomatnn in comparison with ERICA, for a fair com-
parison, we resimulated the datasets but reduced the 
sample size to 8 for each current population, while 
keeping the default values for the other parameters. 
Datasets including scenarios under neutral evolution, 
selective sweep, and adaptive introgression with vary-
ing selection coefficients and times, as well as 10,000 
simulations with a length of 100 kb, were generated for 
each scenario. After dividing the datasets into training 
datasets (90%) and test datasets (10%), the CNNs of 
genomatnn were trained with parameters num_rows = 
256, epochs = 10, AF = 0, and phased = true. We also 
evaluated the robustness of genomatnn by validating 
the datasets using the networks trained based on the 
other demographic scenario.

As the original demographic scenarios only included 
three taxa, we added the chimpanzee as the outgroup 
for ERICA evaluation to meet its minimum taxa 
requirement, with a split time of 6.6 Ma (Besenbacher 
et al. 2019) and a population size of 20 k. The other sim-
ulation parameters were the same as those used for the 
genomatnn datasets. The sample size of the test dataset 
was also comparable to the size of the test dataset used 
to evaluate genomatnn, with 1000 100-kb simulations in 
each scenario. The reference and alternative genotypes 
of the raw simulations were converted to sequence 
alignments by assigning a randomly chosen base. The 
topological probabilities were predicted using the 
ERICA model with the African population as P1, the 
recipient population (European/Melanesian) as P2, 
the donor population as P3 (Neanderthal/Denisovan), 
and the chimpanzee as the outgroup. For each 100 kb 
simulation, the average value of twenty 5-kb windows 
was used. For consistency, we also applied IBDmix and 
Sprime methods to analyze these four-taxon datasets, 
although IBDmix and Sprime did not require outgroup 
information.

Using ERICA to Detect Introgression in Real Genomic 
Data

Data collection and SNP calling of Heliconius butter-
flies.—Genome-resequencing datasets of three popu-
lations of the Heliconius melpomene-cydno clade, H. m. 
aglaope (Peru), H. m. amaryllis (Peru), and H. t. thelxi-
noe (Peru), and one outgroup, H. ethilla (Brazil), were 
downloaded from NCBI PRJNA308754 (Zhang et al. 
2016), PRJEB1749 (Martin et al. 2013), PRJNA73595 
(Heliconius Genome Consortium 2012), and PRJEB11772 
(Davey et al. 2016). Raw reads trimmed by Trimmomatic 
v0.38 (Bolger et al. 2014) were aligned to the H. mel-
pomene v2.5 reference genome (Davey et al. 2016) using 
Bowtie2 v2.3.4 (Langmead and Salzberg 2012), and PCR 
duplicates were removed by Picardtools v1.96 function 
“MarkDuplicates” (http://broadinstitute.github.io/
picard/). SNP genotypes were called using GATK v3.7 
“UnifiedGenotyper” (DePristo et al. 2011), and gen-
otypes with Qual <50 were removed (Supplementary 
Table S4).

Whole-genome reciprocal alignment of the genus Oryza.—
We generated a whole-genome alignment (WGA) of 
Oryza species with chromosome-level assemblies of 
japonica (cv. Nipponbare), indica (cv. 93-11), O. rufipogon, 
O. nivara, O. glaberrima, O. barthii, O. glumaepatula, O. 
meridionalis, O. brachyantha, O. punctata, and Leersia 
perrieri, which were obtained from the OGE/IOMAP 
13-genome package (Stein et al. 2018). We performed 
whole-genome reciprocal alignment according to a 
previously described pipeline (Zhang et al. 2019). 
In brief, pairwise alignments were generated using 
LASTZ (Harris 2007). Alignment blocks that were suf-
ficiently close were joined into chains, and the longest 
chains were kept and grouped using the UCSC Kent 
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Utilities (Kent et al. 2003). The genome of O. sativa ssp. 
japonica was used as the reference, and the final mul-
tiple sequence alignment was generated using aligner 
Multiz/TBA (Blanchette et al. 2004). Genome annota-
tions from OGE/IOMAP were also transformed into 
the new coordinate of WGA based on the alignment 
blocks using in-house scripts.

Demographic modeling of the genus Oryza using G-PhoCS.—
We used G-PhoCS v1.3 (Gronau et al. 2011) to estimate 
the demographic histories of domesticated rice. Coding 
sequences with flanking 1-kb intervals and repeat 
regions were masked to satisfy the neutral assump-
tion. A total of 2267 independent loci with a length of 
1 kb were chosen for the Bayesian inference. The num-
ber of iterations was set to 200,000 for each MCMC 
run, and the initial 20,000 iterations were ignored in 
the post-processing using Tracer v1.6 (http://tree.bio.
ed.ac.uk/software/tracer/). Three repeat runs for all 
possible migration bands between current species were 
tested independently, and only the significant migra-
tion bands were included in the full model test. The 
mutation rate was set to 6.5 × 10–9 per site per genera-
tion (Choi et al. 2017). The raw estimates and calibrated 
values of population size, divergence times, and migra-
tion rates are shown in Supplementary Table S5.

To distinguish introgression from ILS in rice domes-
tication, we simulated and labeled 1000 loci in a region 
with a length of 50 kb using the demographic histories 
estimated using G-PhoCS, but without gene flow, with 
the following command: ms 5 1 -I 5 1 1 1 1 1 -n 2 1 -ej 
1.25 2 1 -n 3 1 -ej 5.5 3 1 -n 4 1 -ej 5 4 3 -n 5 1 -ej 25 5 1 
-en 0.025 5 17.25 -en 1.25 1 11 -en 5 3 1.5 -en 5.5 1 54 
-en 25 1 17.25 -r 8 50000 -T, where populations 1, 2, 3, 
4, and 5 are japonica, O. rufipogon, indica, O. nivara, and 
O. barthii, respectively. Multiple sequence alignments 
were generated using Seq-Gen (Rambaut and Grassly 
1997), with a scale factor of 0.0001, and analyzed using 
ERICA.

Genotype calling of the rice pan-genome data.—Whole-ge-
nome assemblies of indica (cv. 93-11), O. rufipogon, O. 
nivara, O. barthii, and 64 other accessions of domesti-
cated and wild rice (Zhao et al. 2018) were aligned to 
the reference genome of japonica using minimap2 v2.17 
(Li 2018) with the parameters -ax asm5 –secondary = 
no. Alignments with a map quality lower than 60 were 
removed using SAMtools v0.1.19 (Li et al. 2009), and read 
groups were added using the Picardtools v1.96 function 
“AddOrReplaceRead” (http://broadinstitute.github.
io/picard/). A Variant Call Format (VCF) file was pro-
duced using GATK v3.7 “UnifiedGenotyper” with the 
parameter––defaultBaseQualities 60 (Supplementary 
Table S4).

Phylogenetic and population structure analyses of rice.—8.2 
Mb SNPs were used to reconstruct a genome-wide 
maximum likelihood tree using RAxML (Stamatakis 
2014) with the GTRGAMMA model and 20 bootstrap 

replicates. The tree was visualized using iTOL v5 
(Letunic and Bork 2019).

Population structures were identified using 
ADMIXTURE (Alexander et al. 2009) and principal 
components analysis (Price et al. 2006). SNP sites were 
pruned according to linkage disequilibrium using 
PLINK v1.9 (Purcell et al. 2007) with the parameter 
-indep -pairwise 50 10 0.1. With the exception of the 
outgroup taxon O. barthii, 67 samples were included in 
the ADMIXTURE analysis, and k-values were set 2–6. 
GCTA v1.93 (Yang et al. 2011) was used to calculate the 
first two principal components using the genome-wide 
SNP data.

We applied ERICA to a subset of WGA containing 
the sequences of japonica, indica, O. rufipogon, O. nivara, 
and O. barthii, and we identified the introgressed 50-kb 
windows between domesticated rice with a cutoff of 
proportion > 0.4. The borders of these windows were 
converted to the genomic coordinates of japonica for 
downstream analyses. For the pan-genome dataset, 
up to eight samples were chosen to represent each 
focal taxon (Supplementary Table S4), and consensus 
sequences were generated using vcf2MSA.py following 
the ERICA pipeline.

The absolute divergence (dxy) between populations 
was calculated as follows:

dxy =
1
n

n∑
i=1

pix
(
1− piy

)
+ piy (1− pix) ,

where n is the window size and pix and piy are the ref-
erence allele frequencies for base i in populations x and 
y, respectively. Only candidate windows with dxy less 
than the chromosome-wide mean values were retained 
and merged.

Functional Annotation of Candidate Introgressed Loci in 
Oryza

Gene function enrichment.—The introgressed genes were 
extracted based on annotations from the MSU Rice 
Genome Annotation Project (MSU-RAP) (Kawahara 
et al. 2013). GO enrichment analysis was performed 
using CARMO (Wang et al. 2015) with a cutoff of P < 
0.05. Plant Experimental Conditions Ontology (PECO) 
and Plant Trait Ontology (TO) information was down-
loaded from Planteome (Cooper et al. 2018), and the 
hypergeometric test was used to calculate the P values 
for enrichment terms.

Gene correlation analysis.—We obtained a rice expression 
matrix from MSU-RAP (Kawahara et al. 2013). In brief, 
raw RNA sequencing reads of nine tissues from japonica 
(cv. Nipponbare), including leaves at 20 days after sow-
ing, primordial inflorescences at 10 days before flower 
emergence, whole inflorescences at the time of flower 
emergence, anthers and pistils at the time of anthesis, 
whole seeds at 5 days after pollination (DAP), whole 
seeds at 10 DAP, embryos at 25 DAP, and endosperm 
at 25 DAP, were aligned to the reference genome using 
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Tophat (Trapnell et al. 2009). FPKM (fragments per 
kilobase of exon model per million fragments mapped) 
values were calculated using Cufflinks (Trapnell et al. 
2010).

For co-expression clustering, low-expression genes 
with FPKM values <2 across all tissues were removed 
and 24,919 genes were retained. FPKM values were 
log2 transformed, and the k-means clustering algorithm 
in Multiple Experiment Viewer v4.9.0 (Howe et al. 2011) 
was performed with k = 9 and maximum iterations = 
100. Genes assigned to different clusters in five inde-
pendent runs were dropped according to Davidson et 
al. (2012).

Differential gene expression analysis.—RNA-seq data for 
18 accessions of temperate japonica, 24 accessions of 
tropical japonica, and 25 accessions of indica with two 
biological replicates for each accession were down-
loaded from NCBI PRJNA385135 (Campbell et al. 
2020). The shoot tissues from seedlings at 10 days after 
transplant were sampled and sequenced. Raw reads 
were aligned to the reference genome of japonica using 
Tophat2 v2.1.1 (Kim et al. 2013) with gene models from 
MSU-RAP (Kawahara et al. 2013) in union mode. Count 
normalization and differential expression analyses were 
carried out using DESeq2 (Love et al. 2014). Only genes 
expressed in at least one clade (samples with non-zero 
counts greater than 50%) were included in the down-
stream analyses. The cutoffs of differentially expressed 
genes (DEGs) were set to an adjusted P value less than 
0.01 and an absolute value of log2 fold change greater 
than 1.

Results

Efficiency and Robustness of ERICA for Topological 
Inference Based on Simulated Data

Performance comparison of ERICA and the window-tree-
based approach.—We first evaluated the performance of 
ERICA for topology inference using a smaller-scale test 
dataset (D1) that was simulated independently with the 
same evolutionary scenarios used for the training data-
set (Supplementary Table S2). We analyzed test data-
set D1 using ERICA and other approaches, including 
the window-tree-based topology weighting methods 
(“Methods”). The mean absolute errors (MAEs) and 
scaled Euclidean distances (EDs) of the four-taxon and 
five-taxon ERICA models were significantly lower than 
those of the window trees approach (Mann–Whitney U 
test P < 0.001, Fig. 2a and Supplementary Fig. S5). The 
results showed that ERICA efficiently extracted phylo-
genetic information with a degree of accuracy higher 
than that of the window trees approach. When applying 
the window-tree-based topology weighting approach, 
the genotypes of diploid genomes should first be 
phased, then the phylogenic trees are inferred for each 
window using the maximum likelihood, neighbor-join-
ing, or Bayesian methods, and the topology weights are 

calculated from the trees (Martin and Van Belleghem 
2017). Therefore, a smaller window size likely leads to 
low resolution owing to insufficient patterns, whereas 
a larger window size creates difficulty in resolving 
local heterogeneity, both of which increase the bias of 
phylogenetic inferences. However, ERICA avoided the 
multiple steps and directly estimated the topology pro-
portions from sequence data without reconstructing a 
bifurcation tree, reducing the errors.

Considering that the order of taxa in the MSAs will 
not affect the relative topology proportions, we fur-
ther examined whether the prediction results would 
be affected by the order of input data by exchanging 
the order of (P1, P2), (P1, P3), and (P2, P3). The results 
showed that there was no significant difference in the 
errors when swapping the order of (P1, P2) and (P2, 
P3) (Mann–Whitney U test P > 0.05), despite the aver-
age errors of combination (P1, P3) increased by 4%. 
Similarly, randomly changing the sequence order in 
each taxon did not affect the results (Mann–Whitney U 
test P = 0.97 for MAEs and P = 0.94 for EDs), indicating 
that the model was hardly affected by the input order.

Robustness tests using demographic parameters not included 
in the model training.—To further investigate the gener-
alizability and application range of ERICA models, we 
calculated error rates using datasets with different simu-
lation parameters, including recombination rates (dataset 
D2), substitution rates (dataset D3), effective population 
sizes (dataset D4), and sample numbers (dataset D5) 
(Supplementary Table S3). For the four-taxon model, there 
were significant differences among MAEs yielded from 
datasets with different recombination rates (dataset D2, 
Kruskal–Wallis test P < 0.001, Supplementary Fig. S6a,b). 
Datasets with higher recombination rates (4Nr) such as 
0.01, 0.05, and 0.1 yielded the same MAEs (Kruskal–Wallis 
test P = 0.60), whereas datasets with lower recombination 
rates such as 0, 0.001, and 0.005 yielded MAEs significantly 
greater than those generated with the recombination rate 
of the training datasets (0.01) (Mann–Whitney U test P 
< 0.001, Bonferroni correction), with more extreme val-
ues (Supplementary Fig. S6a). In contrast, the error rates 
of the tree-based topology weighting method presented 
an opposite tendency, which was roughly positively 
correlated with the recombination rate (Supplementary 
Fig. S6b). The MAEs of the window trees approach were 
significantly greater than those of ERICA in most cases 
(Mann–Whitney U test P < 0.001), with the exceptions 
of the datasets for recombination rates of 0 and 0.001 
(Supplementary Fig. S6a). These results indicated that the 
traditional window trees approach performed well for 
phylogeny reconstruction of sequence data with homoge-
nous evolutionary history. In contrast, for ERICA models, 
the phylogeny inference did not rely on a long haplotype 
structure, and the presence of a sufficient number of inde-
pendent variation sites improved the model performance. 
These results suggested that ERICA was particularly suit-
able for data with recombination events, which are more 
similar to real experimental data.
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Figure 2.  Performance evaluation of the four-taxon ERICA model. a) The mean absolute error distributions of ERICA and the window-
tree-based topology weighting method. The dashed lines indicate average values for all data (evaluated using test dataset D1, n = 6030). b) 
The relationships between true values and estimated values of the absolute differences between two alternative topologies (evaluated using 
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With regard to tests with different substitution rates 
(dataset D3), we observed that larger and smaller sub-
stitution rates (4Nμ) led to errors greater than those 
achieved with the substitution rate of the training data-
sets (0.01) (Mann–Whitney U test P < 0.001, Bonferroni 
correction, Supplementary Fig. S6c,d), indicating that 
the sequence absolute divergence may affect the perfor-
mance of the current model. Nevertheless, the errors of 
ERICA were significantly smaller than those of the win-
dow trees approach when substitution rates were less 
than 0.01 (Mann–Whitney U test P < 0.001), suggesting 
that ERICA favored samples with small and moderate 
differentiation, for example, ingroup taxa with absolute 
divergence ranging from 0.01 to 0.06, which matched 
that of the training datasets.

Similarly, changes in the effective population size 
(N) also led to increased error rates (dataset D4, 
Supplementary Fig. S6e–f), because the scaled recom-
bination and substitution rates varied. For example, 
for smaller population sizes, both the number of vari-
ants and the independence between loci were reduced, 
suggesting that a larger window may yield better per-
formance for phylogeny inference. We calculated the 
mean values of multiple 5-kb windows and compared 
them with the true values. The results showed that the 
error decreased as the window size increased for all 
population sizes and stabilized at a window size of 
about 100 kb (Supplementary Fig. S7). Thus, when the 
models were applied to real data that had demography 
extremely different from that of the training data, large 
windows could be used to obtain higher accuracy, at the 
cost of reduced resolution. For instance, MAEs consis-
tent with or less than those obtained with the training 
data (5-kb window, N = 1 M) were observed when a 
200-kb window was used for population sizes ranging 
from 0.1 M and 10 M.

When test datasets containing different sample 
sizes per taxon (dataset D5) were analyzed, ERICA 
displayed outstanding robustness, which consistently 
yielded significantly lower MAEs than those yielded 
by the window trees approach, even for the case with 
one individual per taxon (Mann–Whitney U test P < 
0.001, Supplementary Fig. S6g,h). For ERICA, only 
a slight decrease in accuracy was observed when the 
sample size was decreased to one individual per taxon 
(the mean MAE increased from 0.043 to 0.056), whereas 
the mean MAE of the window trees approach increased 
from 0.070 to 0.083. We, therefore, speculated that either 
a chromosome-level reference genome or aligned pop-
ulation genomic data would be particularly suitable for 

ERICA. The performance of the five-taxon model was 
influenced to a degree similar to that of the four-taxon 
model by changes in the recombination rate, substitu-
tion rate, and sample size (Kruskal–Wallis test P < 0.001, 
Supplementary Fig. S8).

Another difference between real sequence data and 
simulations was the presence of sequence errors, miss-
ing sites, and alignment gaps. To evaluate the effect of 
incorrect genotype information, we randomly intro-
duced sequence errors (ranging from 0% to 2%) and 
missing data (ranging from 0% to 20%) into the simu-
lated dataset (datasets D6–D7, Supplementary Table S3, 
“Methods” section). The differences between the ERICA 
results and the true values were positively correlated 
with the rates of sequence errors and missing data, and 
the adverse impacts of sequence errors were greater 
than those of equal proportions of missing sites, while 
the window trees approach was not affected by either 
change (Supplementary Fig. S9). Nevertheless, the data 
showed that the MAEs of ERICA were still significantly 
smaller than or equal to those of the tree-based method 
for an error rate of 2% (Mann–Whitney U test P < 0.001 
for the four-taxon model and P = 0.25 for the five-taxon 
model), and ERICA had relatively better performance 
when the missing data rate was less than about 10%.

Performance of ERICA and Other Algorithms for 
Introgression Detection Based on Simulated Data

Using asymmetric alternative topologies to detect intro-
gression.—To infer local introgression fragments, we 
focused on solving the relationship between topolog-
ical structure and historical gene flow. For the four-
taxon model with three genealogies, the two alternative 
topologies that were different from the species tree 
had equal frequencies under evolutionary scenarios 
without gene flow (Durand et al. 2011), and thus the 
existence of gene flow was indicated when the differ-
ence between the proportions of alternative topologies 
deviated from 0. The D-statistic (also called the ABBA–
BABA test) used the relative counts of derived alleles 
supporting specific patterns to represent the probabil-
ities of alternative topologies (Durand et al. 2011). We 
followed the same assumption, but we replaced the site 
counts with the true values of topology weights and 
estimated values predicted by deep learning models, 
and the corresponding statistic was calculated as the 
difference between the proportions of two alternative 
topologies divided by their sum. In test dataset D1, the 
results of the ERICA model were well correlated with 

test dataset D1, “Methods” section, n = 6030). c) The estimated values of introgression fractions (f) (evaluated using test dataset D8). Eleven 
different values were simulated. The split times t12, t123, and tR were set to 1, 2, and 3 (in units of 4N generations), respectively, and the time of 
gene flow ranged from 10% to 90% of the split time (t12). Gene flows from P3 to P2 (the top panel) and in the opposite direction (the bottom 
panel) were tested. Twenty replicates were used for each scenario. d) The performance of different methods for detecting introgression signals 
with or without selection (evaluated using test dataset D11). The heatmaps show false positive rates for scenarios in the absence of gene 
flow (“null model” and “selective sweep”) and TPR for neutral and adaptive introgression at different migration rates (0.05–5 migrants per 
generation). The number in brackets is the threshold used for each method. Sprime was not available for detecting gene flow from P2 to P3. 
Hundred replicates were tested for each case.
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the true values, with a regression coefficient compara-
ble to the D-statistic (0.9253 and 0.9031, respectively, 
Supplementary Fig. S10a). Since dataset D1 contained 
multiple demographic scenarios with and without gene 
flow, to further explore the relationship between ERICA 
results and the introgression intensity under an explicit 
population history, we simulated scenarios of an instant 
admixture event, with different intensities, times, and 
directions of gene flow (datasets D8–D10, “Methods” 
section). The estimated value of ERICA had a trend 
consistent with the D-statistic, which was greater than 
0 when gene flow existed (evaluated using dataset D8, 
Supplementary Fig. S10b), suggesting that ERICA was 
also sensitive for detecting introgression. In addition, 
the estimated value of ERICA was positively correlated 
with the proportion of introgression (f, which represents 
the fraction of shared haplotypes), but it tended to over-
estimate the true value, which was also a characteristic 
of the D-statistic (Martin et al. 2015). To solve this prob-
lem, we evaluated the performance of ERICA directly 
using the difference between two alternative topolo-
gies, considering that the topology proportions had 
been normalized to fall between 0 and 1. Under these 
conditions, the correlation with the true value increased 
(0.9569, evaluated using dataset D1, Fig. 2b), and more 
importantly, it was a good estimator of the introgres-
sion fraction in general, although it was still affected 
by the time and direction of introgression (evaluated 
using datasets D8–D10, Fig. 2c and  Supplementary 
Fig. S11a,b). When the gene flow was from P3 to P2, 
the estimated values of ERICA were almost identical to 
the simulated f value (Fig. 2c); however, for gene flow 
from P2 to P3, ERICA tended to underestimate the true 
value. Several theoretical and simulation studies have 
shown that the direction of gene flow affects the power 
of D and other statistics (Martin et al. 2015; Hibbins and 
Hahn 2019, 2022), since the internal branch lengths of 
the introgressed fragments can be affected by the direc-
tion of gene flow. For example, when the direction of 
gene flow was from P2 to P3, the expected coalescent 
time of P1 and P3 was t12, whereas it was t123 when the 
direction of gene flow was opposite. Thus, the differ-
ences between the time of population split and gene 
flow from P2 to P3 (t12–tGF) were relatively smaller than 
those in the opposite direction (t123–tGF) (Supplementary 
Fig. S11c), which led to an increased intensity of ILS and 
a decreased proportion of the introgression topology. 
For the same reason, when the population divergence 
time was decreased overall, both ERICA and the fd sta-
tistic underestimated the f value, with the ERICA model 
showing less variance (Supplementary Fig. S11).

Using proportions of discordant topologies to detect introgres-
sion.—Calculating the differences between alternative 
topologies provided a way to detect introgression and 
estimate the fraction in the four-taxon case. However, 
extending the method to more populations is a diffi-
cult task. Because the gene flow between non-sister 
species changed the relative relationships among taxa, 

the existence and direction of gene flow could be iden-
tified according to the discordant patterns between 
local and genome-wide topologies (Supplementary Fig. 
S12). Thus, we wanted to further confirm whether the 
proportion of a given topology can be used to directly 
detect introgression. Validation was performed using a 
series of test datasets with continuous gene flow (data-
sets D11–D19) and a variety of migration rates, species 
split times, effective population sizes, window sizes, 
and sequencing error rates (Supplementary Table S6, 
“Methods” section). The effect of selection was also 
considered in the analyses, and each dataset contained 
four scenarios, with the “Null model” and “Selective 
sweep” scenarios comprising the negative category, 
and the “Neutral introgression” and “Adaptive intro-
gression” scenarios comprising the positive cate-
gory. We also compared the performance of different 
approaches, including allele frequency-based statistics 
and other widely used methods, like Sprime (Browning 
et al. 2018) and IBDmix (Chen et al. 2020). Since accu-
racy and precision scores can be affected by the ratio of 
both categories, we mainly focused on the true positive 
rate (TPR, also known as sensitivity/recall) and the FPR 
(equal to one minus specificity) for each method. For 
ERICA, Sprime, and IBDmix, the sensitivity and spec-
ificity varied with the threshold. To facilitate compari-
son, we used thresholds that resulted in “Null model” 
FPRs that were less than or equal to 5% and obtained 
the TPRs for each dataset. For the D and fd statistics, 
the windows with values significantly deviated from 0 
at a significance level of 0.05 represented the false pos-
itive introgression signals in the absence of gene flow. 
Similarly, the D/fd values that were statistically signif-
icant and consistent with the introgression direction 
were the true positive signals.

We first evaluated the four-taxon data. Evaluated 
using dataset D11, IBDmix had the best perfor-
mance for detecting neutral introgression (Fig. 2d and 
Supplementary Fig. S13a and Table S6). Specifically, the 
TPRs of ERICA and IBDmix were both approximately 
100% for data with higher migration rates (4Nm, where 
m is the fraction of migrants in the recipient popula-
tion), for example, 1 and 5, but, for lower migration 
rates, the TPRs of ERICA were smaller than those of 
IBDmix, especially for data with gene flow from P2 to 
P3. Nevertheless, the sensitivity of ERICA was greater 
than that of other methods; the average TPR of ERICA 
for all migration rates was 68.7%, compared to 64.9% for 
the D-statistic, 62.2% for the fd-statistic, and 39.6% for 
Sprime. For adaptive introgression, ERICA and Sprime 
showed greatly improved classification performance in 
comparison with their performance for neutral cases, 
but the performance of IBDmix did not change mark-
edly (Supplementary Fig. S13a and Table S6). The TPR 
of ERICA was 100%, with an FPR of about 6%, while 
IBDmix had a relatively small TPR (61.8%). Other meth-
ods, including the D-statistic, fd-statistic, and Sprime, 
were also highly sensitive for introgressed regions, 
but their FPRs ranged from 9% to 25% and were thus 
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higher than that of ERICA. In addition, the sensitivities 
of the D-statistic and fd-statistic were slightly reduced 
when the gene flow was from P2 to P3 (Fig. 2d and 
Supplementary Table S6).

We also used more demographic parameters to 
evaluate the performance tendencies of different 
methods under varied demographic histories. For 
neutral introgression, the sensitivities of all methods 
decreased with smaller divergence times (evaluated 
using datasets D12 and D13, Supplementary Figs. 
S13b,c and S14 and Table S6) and population sizes 
(evaluated using datasets D14–D15, Supplementary 
Fig. S15 and Table S6), and detecting the introgres-
sion signals in datasets with smaller divergence 
times were more difficult than identifying those in 
datasets with smaller population sizes. The perfor-
mance of the ERICA model was comparable to that of 
allele frequency-based statistics and better than that 
of the Sprime method, except for the dataset with 
the smallest divergence time (D13). However, for all 
adaptive introgressions, ERICA consistently had the 
highest TPR, which was greater than 95% with the 
exception of dataset D13, while other methods had 
greater decreases in their TPRs as the divergence 
time and population size were reduced, and allele 
frequency-based statistics were strongly affected 
by the direction of introgressions. In addition, the 
performance of all methods increased when a large 
window (50-kb) was used (evaluated using datasets 
D16–D17), and the resulting sensitivity was close to 
or greater than that achieved with the dataset with a 
large population size and a small window size, sug-
gesting that there may be a trade-off between resolu-
tion and accuracy. However, the relative performance 
of the different methods did not change when a large 
window (50-kb) was used (Supplementary Fig. S16 
and Table S6).

Developed from D, DFOIL was designed for detecting 
introgression for a five-taxon dataset (Pease and Hahn 
2015). Since DFOIL is not suitable for asymmetric topolo-
gies, we simulated datasets to represent possible inter-
specific gene flow in a symmetric topology (((P1, P2), 
(P3, P4)), O) and with different divergence times, intro-
gression times and directions. We summarized the per-
formance of different methods and replaced the D- and 
fd-statistics with DFOIL (Supplementary Figs. S17 and S18 
and Table S6). Consistent with the four-taxon dataset, 
the sensitivities of the five-taxon cases were influenced 
by demographic histories and population sizes (eval-
uated using datasets D11–D15). More specifically, the 
performance of IBDmix changed only slightly in com-
parison with its performance for the corresponding 
datasets with four taxa, probably because this analysis 
only involved recipient and donor populations without 
outgroups. As more alternative topologies increased 
the complexity of the model, the sensitivities of ERICA 
and the DFOIL method decreased in the five-taxon case. 
Again, increasing the window size improved the sensi-
tivities of ERICA and other methods (evaluated using 
datasets D16–D17, Supplementary Fig. S19 and Table 

S6). Nevertheless, ERICA showed the best in perfor-
mance for detecting adaptive introgressions in all data-
sets with the exception of D13.

Considering that sequencing errors can lead to an 
increased rate of errors in phylogeny inference, we 
also tested their impact on introgression detection 
(evaluated using datasets D18–D19). The performance 
of ERICA, the D-statistic, and the fd-statistic did not 
change greatly with the addition of sequencing errors 
and missing data, but IBDmix, Sprime, and DFOIL were 
sensitive to both sequencing errors and missing data 
(Supplementary Figs. S20 and S21 and Table S6). In par-
ticular, IBDmix showed poor performance for datasets 
with 10% missing sites (D19).

The threshold of candidate introgressed segments is a 
key parameter in the models, because an inappropriate 
threshold may reduce the sensitivity of introgression 
detection. For example, when the default threshold 
scores suggested by the software were used, the FPRs 
of IBDmix and Sprime were strongly increased in 
some cases, which may have resulted in the identifi-
cation of all windows without gene flow as positive 
loci (evaluated on datasets D11–D13,  Supplementary 
Fig. S22). Using the simulated data, we evaluated the 
distributions under the null hypothesis and set the 
threshold according to the preset FPR, and the thresh-
olds were influenced by the given population histories. 
However, applying this method to real data was dif-
ficult, because the true introgressed regions were not 
known. Therefore, we determined a threshold for the 
ERICA model that was less affected by the population 
history and applicable to real genomic data by teasing 
apart the signatures of introgression and ILS. Basically, 
the windows with strong support for alternative topol-
ogies, which had significantly higher proportions than 
those caused by ILS, were considered as introgressed 
loci. Although the intensity of ILS is influenced by 
demographic history, it is always smaller than one-
third theoretically (Supplementary Results). Given the 
existence of stochastic errors, we evaluated the distri-
bution of topology proportions under the strongest ILS 
using simulated datasets and used the 95% quantile 
(0.5 for 5-kb windows and 0.4 for 50-kb windows) as 
the cutoff in further analyses of real data, unless oth-
erwise noted (Supplementary Results, “Discussion” 
section). This relatively strict threshold ensured a low 
FPR under different population histories, which was 
0 for all tested data sets and was highly sensitive to 
adaptive introgression, despite the undetectable weak 
neutral gene flow (evaluated using datasets D11–D13, 
Supplementary Fig. S22).

Performance based on specific, real demographic models 
with human data as an example.—To further evaluate the 
generalization ability of ERICA, we compared the per-
formance of ERICA with that of genomatnn (Gower 
et al. 2021), a deep-learning-based approach that 
includes CNNs that can be trained using prior demo-
graphic information and pre-trained CNNs based on 
human demographic history. Therefore, we generated 
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two additional datasets according to human demo-
graphic history with adaptive introgressions and also 
fitted two of genomatnn’s pre-trained CNNs: human 
demographic scenario A (including gene flow from 
Neanderthal to Europeans) and scenario B (including 
a more complex history and focusing on introgressions 
from Denisovans to Melanesians) (Supplementary Fig. 
S23a, “Methods” section). Since genomatnn’s CNNs 
required a specified number of samples for the input, 
and its pre-trained CNNs include more samples than 
the maximum number that ERICA can input, we also 
trained new CNNs for genomatnn with a comparable 
number of samples and compared its performance to 
that of the pre-trained CNNs. Our results showed that 
genomatnn was robust for inferences with small sample 
sizes (Supplementary Fig. S23b), and we thus compared 
it with ERICA and other methods (Supplementary Fig. 
S23b). For human demographic scenario A, genomatnn 
performed best, with a TPR of 79.0% (with neutral data-
sets as the negative category and FPR ≤ 5%), followed 
by ERICA (65.1%), Sprime (39.2%), and IBDmix (15.1%) 
(Supplementary Fig. S23b). In the case of scenario B, 
with a more complex history, all methods showed 
decreased performance, although the TPR of ERICA 
(48.4%) was slightly higher than that of genomatnn 
(45.1%) (Supplementary Fig. S23d). Furthermore, 
since the demographic information used in genomat-
nn’s CNN training may differ from the real condition, 
that is, model misspecification, we also evaluated the 
impact of this difference on the genomatnn method by 
exchanging the test datasets of the two demographic 
scenarios. Both results showed performance declines; 
the TPR of scenario A (68.5%) was similar to that of 
ERICA, while the TPR of scenario B declined even more 
sharply and was much lower than that of ERICA. We 
further explored the relationship between accuracy and 
the selection coefficient, as well as the time at which 
the selection started (Supplementary Fig. S23c and e). 
The results showed that the TPRs of both methods were 
highly affected by the selection intensity and time. The 
TPRs of ERICA were greater than 95% for some of the 
subsets under ancient and strong selection, and the TPR 
for scenario B was especially high (12.5% and 31.25% 
for scenarios A and B, respectively), suggesting that 
ERICA can effectively detect strong signatures of adap-
tive introgression. In conclusion, our results revealed 
the different performance and characteristics of two 
deep learning-based approaches. On the one hand, 
genomatnn had better performance in some cases, such 
as demographic scenario A, but was also affected by 
the demographic histories of the focal taxa and by the 
errors between the pre-set and real demographic sce-
narios. On the other hand, ERICA showed TPRs that 
were comparable or higher than those of genomatnn 
with model misspecification. When ERICA was applied 
to pre-trained CNNs, it showed good performance for 
scenarios A and B, which both differed greatly from 
its training dataset, including the inclusion of differ-
ent simulators, as well as differences in parameters 
such as population sizes, mutation rates, and selection 

pressures, suggesting greater generalization ability in 
comparison with that of genomatnn.

Time and memory costs of ERICA.—We also compared 
the run times of ERICA models with allele-frequen-
cy-based methods (Supplementary Table S7). ERICA 
models were faster than the traditional methods in han-
dling large datasets, but their speed advantages were 
not seen with smaller datasets, given that loading the 
parameters of neural networks comprised the majority 
of the execution time and became a rate-limiting step. 
The minimum memory required for running ERICA 
was 3.3 Gb, and the memory consumption increased 
about 9-fold with the size of the MSA file. Since the 
MSA data were first divided into non-overlapping 5-kb 
windows and then the following prediction processes 
of different windows were independent, the genome-
wide or chromosome-wide sequences could be split 
into subsets with appropriate data size according to the 
hardware resource limit.

Inferring Gene Flow Based on Real Genomic Data

Disentangling local and partial introgression in Heliconius 
butterflies.—Next, ERICA was evaluated using a rep-
resentative genome-resequencing dataset of Heliconius 
butterflies, which are known as Müllerian mimics 
and display complex relationships owing to intensive 
hybridization during adaptive radiation, even without 
an available bifurcating tree (Edelman et al. 2019). We 
analyzed the dataset at the whole genome level using 
ERICA. Consistent with the order of species differen-
tiation, our results showed that the two H. melpomene 
races, H. m. aglaope and H. m. amaryllis, were grouped 
together overall as sister taxa relative to H. timareta 
thelxinoe (Topo A in Fig. 3), and the highest proportion 
was along the Z chromosome (Chr21) (Supplementary 
Fig. S24), which was consistent with previous results, 
and suggested that the resistance of the Z chromosome 
to introgression was greater than that of autosomes in 
H. melpomene and H. timareta (Martin et al. 2013, 2019). 
In addition, the Z chromosome may also be less affected 
by ILS owing to its smaller effective population size in 
comparison with those of autosomes. The highest pro-
portion of grouping for the sympatric co-mimics, H. 
m. amaryllis and H. t. thelxinoe (Topo C in Fig. 3), was 
observed on chromosome 18 (ranging from 700 kb to 
850 kb), where it is located at a known locus controlling 
wing color patterns, named B/D (Heliconius Genome 
Consortium 2012) (Fig. 3a,b and Supplementary Fig. 
S24 and Table S8), suggesting that ERICA efficiently 
captured the known signature of introgression from the 
real data. Consistent with previous studies, the results 
of fd were smoother than those of the D-statistic along 
the B/D locus (Fig. 3c), suggesting that the D-statistic 
may not be suitable for detecting local introgressed sig-
nals (Martin et al. 2015), whereas the results of ERICA 
were similar and comparable to those of fd. To more 
accurately estimate the random errors of different meth-
ods for real genomic data, we compared the results of 
their analyses of adjacent 5-kb windows by assuming 
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a similar evolutionary history within a linkage dis-
equilibrium block in Heliconius butterflies (Heliconius 
Genome Consortium 2012). The differences had a mean 
value of zero, and the variance of ERICA was smaller 
than that of fd (Fig. 3d). We subsequently detected loci 
of putative introgression between H. m. amaryllis and H. 
t. thelxinoe using ERICA, D and fd. ERICA characterized 
947 50-kb loci suggesting introgression between H. m. 
amaryllis and H. t. thelxinoe, with 37% of these loci also 
supported by D or fd (Fig. 3e). We also evaluated some 
ERICA-specific results by focusing on the three outlier 
regions with the highest proportions of topology C that 
did not have significant D and fd statistics. Among these 
regions, two loci showed reduced absolute divergence 
between H. m. amaryllis and H. t. thelxinoe, and the phy-
logenetic patterns of discordance were limited to a sub-
set of samples (Supplementary material Fig. S25a–b and 
Table S8). The D, fd, and dxy methods suggested that the 
third locus was a typical, but not significant, signature 
of introgression due to heterogeneity (Supplementary 
Fig. S25c and Table S8). Taken together, these findings 
demonstrate that ERICA is a remarkably accurate and 
efficient method for detecting signatures of introgres-
sion in species with complex evolutionary history.

Detecting genome-wide hybridization in rice using multiple 
reference genomes.—Given that ERICA showed excellent 
performance with both simulated and real datasets, we 
used it to investigate potential introgression between 
domesticated and wild rice in the genus Oryza, includ-
ing the Asian cultivated rice Oryza sativa and its wild 
relatives O. rufipogon and O. nivara, in addition to the 
African cultivated rice O. glaberrima and its wild pro-
genitor O. barthii. As two major subspecies of Asian 
cultivated rice, O. sativa ssp. japonica (with tropical 
and temperate subgroups) and O. sativa ssp. indica, 
can be distinguished by morphological and genetic 
differences, but their origins and relationship are con-
troversial. Two other populations, aromatic rice and 
aus rice, are considered to be subgroups of the japonica 
and indica subspecies, respectively (Garris et al. 2005). 
Genome-wide phylogeny studies suggest that japonica 
and indica have different wild progenitors along with 
several shared crucial domestication genes, indicating 
the existence of gene flow (Huang et al. 2012; Civáň et 
al. 2015; Huang and Han 2015; Choi et al. 2017).

We first applied both ERICA and a Bayesian inference 
approach, G-PhoCS, to detect global signals of gene 
flow using Oryza reference assemblies. Three indepen-
dent runs of G-PhoCS suggested a consistent demo-
graphic model with slightly later divergence times for 
cultivated and wild rice (about 4.2 ky for Asian rice 
(95% HPD interval: 1.1–7.7 ky) and 0.4 ky for African 
rice (95% HPD interval: 0–1.3 ky)) in comparison with 
the ages of the oldest archaeological remains (about 9 
ky in Asia (Zheng et al. 2016) and 3 ky in Africa (Wang 
et al. 2014)) with strong migration from japonica to indica 
(Supplementary Fig. S26 and Table S5). As G-PhoCS 

considers only independent neutral loci, it detected 
global gene flow between O. sativa populations, but it 
did not resolve local and adaptive introgressions that 
were likely present near coding regions. Based on the 
results described above, we inferred both signatures 
of global and local introgression in reference assem-
blies of Asian cultivated rice using ERICA, and ERICA 
yielded the highest proportion of topology M, which 
was consistent with the species tree (Fig. 4a–b and 
Supplementary Fig. S26). Given that both ILS and gene 
flow might lead to alternative topologies and that the 
influences of both of these processes can be determined 
based on divergence time and population size (Pamilo 
and Nei 1988; Rosenberg 2002), we determined the 
baseline intensity of ILS by modeling the rice demogra-
phy without gene flow using simulated sequences and 
analyzing the data using ERICA (Fig. 5a–c, “Methods” 
section). According to the null modeling results, ILS 
caused four different levels of probabilities for alter-
native topologies, and the ERICA results for simulated 
data showed a similar, but not completely identical, pat-
tern of distribution due to random errors. In compari-
son with the simulated null model, three categories, B, 
G and C, showed a significantly higher proportion and 
yielded a list of introgressed loci between japonica and 
indica, as well as from O. rufipogon to indica (Fig. 5d), 
supporting the idea that introgression played a signifi-
cant role in the domestication of indica subspecies (Choi 
et al. 2017). To further dissect the introgression regions 
involved in rice domestication, we identified loci that 
supported the cluster of japonica and indica with high 
confidence (proportion of topology B, G, or N > 0.4) and 
extracted putative introgression regions with absolute 
genetic divergence lower than the chromosomal mean 
divergence, because such introgression regions have a 
younger divergence time than other genomic regions, 
which also distinguishes introgression from ancestral 
variation (Smith and Kronforst 2013). We obtained a list 
of 71 candidate introgressed loci scattered around the 12 
chromosomes, including 1174 genes, 50 of which were 
well annotated in the Rice Annotation Project Database 
(RAP-DB) (Sakai et al. 2013) (Supplementary Table S9). 
Among these 71 candidate loci, 40 loci overlapped with 
19 previously reported selective sweep regions related 
to domestication traits such as panicle length, germina-
tion rate, hull color, stigma exsertion, stigma color, tiller 
angle, and awn length (Huang et al. 2012). A few known 
domestication genes, including OsSh1 (Lin et al 2012), 
PROG1 (Jin et al 2008; Tan et al 2008), OsC1 (Saitoh et 
al 2004), and Rc (Sweeney et al 2006), were also located 
within four introgressed loci or within the range of LD 
(approximately 100–200 kb in cultivated rice (Huang 
et al. 2010)). A Gene Ontology (GO) enrichment analy-
sis for all 1174 genes in the candidate introgressed loci 
in comparison with all rice genes suggested that these 
genes are involved in the response to stimulus and 
bacterium, biosynthetic process and photorespiration 
(Supplementary Fig. S27a and Table S9). For example, 
one remarkable locus on chromosome five containing a 
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protein-coding gene controlling plant innate immunity, 
EBR1 (You et al 2016), showed both the strongest and 
longest signature of introgression between japonica and 
indica (up to 0.45 Mb in length), demonstrating the high 

functionality of this introgression locus (Supplementary 
Table S9). These results suggest that ERICA is a useful 
tool for identifying adaptive introgression among com-
plex patterns of introgression.

Figure 3.  Signatures of introgression in Heliconius butterflies. The proportions of three topologies for each 50-kb adjacent window were 
inferred across chromosome 18 using ERICA a). Color pattern locus B/D, which is known to be introgressed between H. m. amaryllis and H. t. 
thelxinoe, is highlighted in green a–b). Zooming in to the B/D locus, the signature of introgression was evaluated for each 5-kb window using 
ERICA b), the D-statistic and fd c). The ERICA results are shown in the form of proportion of topology ((((H. m. amaryllis, H. t. thelxinoe), H. m. 
aglaope), H. ethilla)) minus proportion of topology ((((H. m. aglaope, H. t. thelxinoe), H. m. amaryllis), H. ethilla)) to make them comparable with 
the D-statistic and fd results. For the three approaches, the differences between the values of two adjacent 5-kb windows were calculated, and 
their distributions were plotted to indicate the intensity of the random error d). A Venn diagram was plotted to show the overlapping 50-kb 
windows detected by ERICA, the D-statistic and fd e).
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Figure 4.  Genome-wide patterns of admixture in rice domestication and adaptation. There are 15 representative topologies suggesting 
possible relationships for four ingroup rice accessions, given O. barthii as an outgroup taxon a). Genome-wide evolutionary relationships 
were predicted using ERICA for Asian cultivated and wild rice (japonica, O. rufipogon, indica, O. nivara) b) and for tropical and temperate rice 
accessions (tropical japonica, temperate japonica, O. rufipogon, O. nivara c) and tropical japonica, temperate japonica, O. rufipogon, indica d)). The 
color codes correspond to the topologies shown in a).
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Dissecting local adaptive introgression in rice based on 
pan-genomic data.—We further dissected the signatures 
of introgression at a population level by applying 
ERICA to a rice pan-genome dataset including 66 diver-
gent rice accessions of both wild and cultivated rice 
(Zhao et al. 2018). We observed that the 66 accessions 

formed distinct clades, but with patterns of admixture 
in O. rufipogon and among tropical accessions, for exam-
ple, O. nivara, tropical japonica, and aus rice, and most 
accessions of aus rice were assigned to the O. nivara 
clade (Supplementary Fig. S28). We, therefore, focused 
on detecting introgression between tropical japonica 

Figure 5.  Disentangling introgression and ILS in rice domestication. The genome-wide proportion of each topology was inferred using 
ERICA for every 50-kb window across the genomes of Asian cultivated and wild rice (japonica, O. rufipogon, indica, O. nivara) given O. barthii 
as an outgroup taxon. The results are summarized as a boxplot. The 15 topologies correspond to topological structures shown in Fig. 4a a). To 
estimate the strength of ILS, a dataset including 1000 50-kb windows was simulated according to rice demography without gene flow, which 
showed four different levels among possible topologies in topology weighting b). The simulated dataset was analyzed using ERICA and 
showed four levels of proportion c). The putative introgressed loci were summarized by comparing the ERICA results of the real and simulated 
data. The P values were calculated using Chebyshev’s Theorem, with a sample mean of 0.017 and a standard deviation of 0.004 for eight 
topologies that had the same distribution. ** indicates P value < 0.01 and * indicates P value < 0.05. d).
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Introgressed genes
tropical japonica vs temperate japonica

indica vs tropical japonica

Differentially expressed genes

Genes without significant difference

Figure 6.  Expression patterns of introgressed genes in different rice tissues and clades. a) The expression levels of introgressed genes were 
assigned to nine co-expression clusters. Boxplots show the ranges of log2 FPKM. Line plots show the medians across nine tissues, including 
leaves at 20 days after sowing, primordial inflorescences at 10 days before flower emergence, whole inflorescences at the time of flower 
emergence, anthers and pistils at the time of anthesis, whole seeds at 5 days after pollination (DAP), whole seeds at 10 DAP, embryos at 25 DAP, 
and endosperm at 25 DAP. The numbers of introgressed genes/all expressed genes in each cluster are annotated above the relevant cluster, 
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and other tropical accessions using ERICA. Our results 
suggest a genome-wide pattern of introgression from 
indica and O. nivara to tropical japonica (Fig. 4c and  
Supplementary Tables S9–S10). We identified 55 puta-
tive introgressed loci with high confidence (proportion 
of topology O > 0.4) and absolute genetic divergence 
lower than the chromosomal mean divergence, rang-
ing from 50 kb to 300 kb in length and including 797 
genes (Supplementary Table S9). Notably, the results 
of GO and Plant Experimental Conditions Ontology 
(PECO) analyses suggested that these introgression loci 
were likely involved in tropical adaptation and stress 
resistance. The top terms yielded by the GO analysis 
included response to light stimulus, salicylic acid medi-
ated signaling pathway, cellular response to phosphate 
starvation and homoiothermy, whereas the significant 
terms yielded by the PECO analysis included con-
tinuous dark exposure, Magnaporthe grisea exposure, 
sodium chloride exposure and cold or sub-optimal 
temperature exposure (Supplementary Fig. S27b and 
Table S9). In addition, some known introgressed genes 
were also located within the range of LD to the intro-
gression hotspots (Supplementary Table S9), such as the 
grain size locus OsSPL13 and the thermotolerance gene 
OsTT1, which were introgressed from indica to tropi-
cal japonica and were selected for large grain size (Si et 
al. 2016) and local adaptation to tropical temperatures 
(Li et al. 2015), respectively, indicating that both arti-
ficial selection and natural selection were involved in 
the fixation of introgressed loci. In addition, we found 
that tropical japonica received another thermotolerance 
gene, OsCaM1-1, which plays a crucial role in the Ca2+ 
signal-mediated heat shock response in rice (Wu et al. 
2012), suggesting a potential role in the heat adaptation 
process of tropical accessions.

Some of the introgressed genes show similar expression 
patterns.—To explore the expression patterns of the 
introgressed genes, we also investigated the co-ex-
pression clusters of all rice genes. After the removal of 
low-expression genes and k-means clustering, 18,040 
genes were divided into nine clusters, seven of which 
showed tissue-specific up-regulation patterns. Among 
the 797 introgressed genes, 313 genes with a detection 
rate higher than the genome average were assigned 
to the nine clusters described above and found to be 
significantly enriched in a set of genes expressed in 
early and late seed development (hypergeometric test 
P value = 0.002) (Fig. 6a). We also analyzed differen-
tially expressed genes (DEGs) among the three clades 

of temperate japonica, tropical japonica, and indica using 
transcriptome data of 67 rice accessions. We found that 
the similarity of the expression patterns of temper-
ate japonica and tropical japonica was greater than the 
similarity of either of these patterns to that of indica 
(Fig. 6b), suggesting a closer evolutionary relation-
ship between temperate japonica and tropical japonica. 
We further focused on genes with the same expression 
level in tropical japonica and indica, but not in temperate 
japonica, which were likely involved in the local adap-
tation of tropical japonica, yielding 918 genes, among 
which 42 genes (4.6%) overlapped with the introgressed 
loci (Fig. 6c). In contrast, for the 4270 genes expressed 
similarly in tropical japonica and temperate japonica, but 
differentially in indica, only 29 genes (0.7%) overlapped 
with the introgressed loci, indicating that gene flow 
may have played an important role in both the genomic 
and transcriptomic differentiation of Asian cultivated 
rice. Note that only seedlings were sampled in our 
analyses, and the DEGs may not represent all transcrip-
tomic differences. One of the remarkably introgressed 
DEGs was OsPEX11-2, belonging to the rice PEX11 gene 
family, which is implicated in peroxisome biogenesis 
and maintenance. OsPEX11-2 was down-regulated in 
both tropical japonica and indica, whereas its neighbor-
ing paralogue, the salt stress tolerance gene OsPEX11-
3 (Cui et al. 2016), showed no significant expression 
difference (Fig. 6d). Both OsPEX11-2 and OsPEX11-3 
were included in a putative introgressed locus from 
indica/O. nivara to tropical japonica inferred by ERICA. 
However, the two genes had differential expression 
patterns under normal and stress situations (Nayidu et 
al. 2008), indicating that they may have divergent func-
tions to suit different types of peroxisomes. Although 
OsPEX11-2 did not respond to common stresses and 
its role in peroxisome organization remains unclear, 
our results show that it was selected in tropical japonica 
during adaptation to the local environment, probably 
by influencing photorespiration.

Discussion

Data Labeling and Model Architectures of CNNs

In this study, we present an efficient and robust 
CNN-based pipeline to infer complex evolutionary his-
tory, demonstrating the remarkable potential of deep 
learning for generating sequence-based evolutionary 
inferences. Owing to the intrinsic property of universal 

with the fold changes (FC) of the introgressed sets and the P values of hypergeometric tests enclosed in parentheses. b) Volcano plots show 
differentially expressed genes (DEGs) between tropical japonica/temperate japonica and between indica/tropical japonica. Log2 transformed 
FC were plotted against log10 transformed statistical significances. Red and blue points represent up-regulated and down-regulated genes, 
respectively. c) Venn diagrams show the overlaps between sets of introgressed genes and DEGs for three different rice accession clades: 
temperate japonica, tropical japonica, and indica. d) Examples of introgressed genes with and without expression differences. OsPEX11-2 has a 
lower expression level in tropical japonica and indica in comparison with that of temperate japonica, whereas OsPEX11-3 shows no significant 
difference in expression among these accession clades. The box plots summarize the normalized counts (DESeq2’s median of ratios) for each 
clade. *** indicates adjusted P value < 0.001, ** indicates adjusted P value < 0.01 and * indicates adjusted P value < 0.05.
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function approximators, CNNs are suitable for feature 
extraction in a growing number of classification tasks. 
However, the data labeling strategy can limit the model 
performance and data capacity. For example, the max-
imum data capacities of two previously reported CNN 
models were limited to four sequence alignments, and 
the task is more likely to be classification instead of quan-
tification (Suvorov et al. 2020; Zou et al. 2020). Instead, 
we generated a vector recording the proportions of all 
possible topologies of genomic windows, which were 
related to both spatial heterogeneity and sample hetero-
geneity, as a data label. This labeling strategy recorded 
more information than simple classification for down-
stream analyses, and its relatively lower dimensional-
ity decreased the amount of computation and the risk 
of overfitting, consequently increasing the generaliza-
tion capability and robustness of the model. In short, 
this labeling strategy allowed ERICA to accommodate 
both genome assemblies and population genomic data 
in multiple taxa, while enabling ERICA to quantify the 
evolutionary history across the genome, demonstrating 
the potential of deep learning in handling population 
genomic data and quantifying complex history.

For the network architecture, we referred to previous 
studies (Suvorov et al. 2020; Zou et al. 2020) and tried dif-
ferent models, including simple convolution layers and 
Residual Networks. We finally selected the current net-
works with multiple residual and dense blocks and the 
best performance in the training process. Although the 
increase in model parameters may introduce the risk of 
over-fitting, we found that the losses were decreased in all 
of the training, validation and independent test datasets, 
indicating that the networks were not over-fitted. In addi-
tion, the losses approached the minimum rapidly, which 
were convergent within one epoch in both the four-taxon 
and five-taxon models, suggesting that the size of train-
ing datasets was sufficient to train our networks. Other 
hyper-parameters, including the number of convolution 
layers, kernel size, activation function, learning rate, and 
batch size may also be related to the accuracy, training 
time, and resource consumption of the model. Optimizing 
these parameters will aid further improvement of the per-
formance of ERICA models.

Model Generalization and Specialization

As the effectiveness of population genetic inference 
is related to demographic histories and there is a trade-
off between the model generalization ability and accu-
racy under a specific evolutionary scenario, previous 
machine learning and deep learning approaches, such 
as CRF (Sankararaman et al. 2014), HMM (Skov et al. 
2018), FILET (Schrider et al. 2018), and genomatnn 
(Gower et al. 2021), require a well-studied and spe-
cies-specific demographic model for parameter training, 
and thus are difficult to apply to non-model organisms 
and increase computational complexity. Instead of 
using simulations from a specific demographic scenario 
for model training (example.g., the demographic histo-
ries of Drosophila sister species used in FILET (Schrider 

et al. 2018) and the human demographic models used 
in genomatnn (Gower et al. 2021)), our training datasets 
covered a large number of evolutionary scenarios with 
variable divergence times and gene flow intensities, 
and we evaluated the performance on test datasets with 
large variations in simulation parameters. Our results 
suggested that the performance of ERICA may be influ-
enced by demographic history, which may be the result 
of a combination of two factors. The first factor influ-
encing demographic history is the differences between 
the simulation parameters of the test and training data-
sets, just as the error rates of ERICA’s topology infer-
ence varied with population sizes; the second factor is 
the demographic history of the focal taxa, as the per-
formance of other methods for detecting introgression 
showed the same trend as ERICA. Nevertheless, we 
found that ERICA models had accuracy comparable 
to that of other established methods, even with large 
changes in population sizes and divergence times.

In particular, for the detection of adaptive introgres-
sion, ERICA was found to have the highest sensitivity 
in most cases (Supplementary Table S6). We also found 
that the error decreased with increasing window size, 
suggesting that a larger window size can be used when 
the real demographic scenario differs greatly from 
that of the training dataset. Evaluations using data-
sets under human demographic scenarios also showed 
that ERICA can efficiently detect introgressions under 
ancient and strong selection. Thus, when the real pop-
ulation history is broadly consistent with the training 
dataset, ERICA’s trained models can be used directly 
without retraining and can be applied to different 
taxa, including animals and plants. In future research, 
we aim to optimize ERICA through model training in 
two directions. On the one hand, the generalization 
ability of ERICA can be further improved by increas-
ing the range of simulation parameters and the num-
ber of demographic models for training datasets, such 
as by introducing a wider range of population sizes, 
population dynamics over time and species, different 
selection pressures, and more sequence errors. To effi-
ciently generate more realistic scenarios, flexible and 
programmable simulators, such as the coalescent sim-
ulator msprime (Kelleher et al. 2016) and the forward 
simulator SLiM (Haller and Messer 2019) can be used 
as alternatives to ms, which can facilitate the simulation 
of scenarios with larger sample sizes, recombination 
hotspots, and selection. However, it is important to note 
that more attempts are needed due to the higher het-
erogeneity of the training dataset, which may increase 
the difficulty of model training. On the other hand, for 
species with a well-characterized evolutionary history, 
species-specific data can be used as training datasets to 
obtain higher accuracy. Considering the generalization 
ability of current models, in both cases, fine-tuning the 
network parameters starting from the pre-trained mod-
els may help to reduce training time and training data 
size in comparison with training from scratch.

In addition, for the approaches based on sequence 
features without model training, the strength of the 
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background noise and introgression signal can also be 
affected by the population history; for example, the IBD 
score of the null hypothesis without gene flow increases 
with decreasing divergence time, whereas it decreases 
with decreasing effective population size. Therefore, 
it is difficult to assess the specificity and sensitivity of 
preset thresholds under unknown population histo-
ries, and inappropriate thresholds can strongly reduce 
the accuracy of the analyses (Supplementary Fig. S22). 
These findings also indicate that distinguishing local 
signatures of introgression from the genomic back-
ground under complex demographic scenarios is an 
inevitable challenge for general approaches. We have 
determined a threshold by evaluating the impact of 
ILS under extreme conditions to simplify the ques-
tion, which could help identify introgressed loci that 
are highly credible. For most scenarios under rapid 
speciation or with closely related taxa, the intensity 
of ILS is strong and comparable with our hypothe-
sis. Nevertheless, we still cannot rule out possible 
false-negative errors, because the proportions of discor-
dant topologies caused by ILS are likely less than this 
threshold in other real genomic data. Therefore, some 
introgressed loci with weaker signals may be filtered 
out by the stringent threshold, owing to either having 
undergone recombination or becoming unfixed in the 
recipient population, which indicates that these loci 
may have relatively small effects on adaptation. For 
these scenarios, we suggest that the filtering threshold 
should be flexible and customizable. For example, with 
more prior knowledge such as the demographic history 
of the focal taxa, the features of ILS can be modeled and 
evaluated specifically, which is helpful in determining a 
more appropriate threshold for a given system. In con-
clusion, the ERICA pipeline is a general and easy-to-use 
utility, which is ready to use and can have applications 
in a wide range of scenarios. As a new attempt to make 
such deep learning-based applications available for 
broad usage, both an online submission portal and a 
local version are offered to meet different needs.

More Features and More Taxa

The reduction of absolute divergence is considered 
another signature of introgression; and a recent method, 
QuIBL (Edelman et al. 2019), uses internal branch lengths 
instead of gene tree discordance to infer introgression. 
Therefore, we employed DNA sequence divergence as an 
additional filtering step, and we considered learning fea-
tures of the distance between sequences using CNN as a 
potential way to further improve the accuracy of ERICA 
models. In addition, current ERICA models can deal with 
up to five taxa, which we consider an appropriate and 
applicable number for many tasks. When studying more 
than five taxa, possible combinations of four or five taxa 
can be used for the analyses. To reduce the consumption of 
computing resources, taxon combinations can be selected 
according to biological problems, prior knowledge, or 
results of other population genetic analyses.

Conclusions

We present a feasible scheme to detect introgression sig-
nals using deep learning algorithms with DNA sequence 
data as input, which includes data labeling, sequence 
encoding, neural network structure, data simulation, and 
model training. We designed two CNNs with multiple 
dense and residual blocks and trained the models with 
simulated data under various demographic scenarios of 
phylogenies, divergence times, and gene flow events. The 
pre-trained models can be used to predict relationships of 
four and five focal taxa from MSAs, and the local signals 
of introgression between non-sister species can be identi-
fied via discordant topologies. We evaluated the accuracy 
and robustness using several test datasets and show that 
the ERICA approach performs well in inferring topology 
proportions and gene flow in most cases. The adaptive 
introgression regions detected in Heliconius and Oryza 
suggest that ERICA is applicable to multiple taxa, which 
may contribute to studies of introgression on a variety of 
organisms. We provide the source code, trained models 
and a web server to aid the use of ERICA. We also sug-
gest that the models can be further fine-tuned by cover-
ing more demographic models in the training dataset to 
improve generalization or by providing a species-specific 
training dataset to improve accuracy.
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