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ORGAN REGENERATION

Reactivation of mammalian regeneration by turning  
on an evolutionarily disabled genetic switch
Weifeng Lin†, Xiaohui Jia†, Xiaofeng Shi†, Qiuya He†, Panyu Zhang†, Xianglei Zhang, Liping Zhang, Mingqi Wu,  
Tengfei Ren, Yufei Liu, Haohao Deng, Yanyao Li, Shiqi Liu, Shaoyong Huang, Jingmin Kang, Jun Luo*,  
Ziqing Deng*, Wei Wang*

INTRODUCTION: Regeneration, an apparently beneficial trait, is well 
maintained in some animal lineages but has been lost in many 
others during evolution and speciation. A complete rescue of organ 
regeneration in mammals with limited regenerative capacity has not 
yet been achieved, primarily because of limited information on the 
linkage between the failure of regeneration and the genetic changes 
in the genome. Understanding what has occurred during animal 
evolution to drive the loss or gain of regeneration will shed new 
light on regenerative medicine. 

RATIONALE: Identification of the causal mechanism underlying  
the failure of regeneration in mammals through comparative 
strategies is usually entangled by the large phylogenetic  
distance from highly regenerative species (mostly lower verte-
brates). Exploration of principles in the evolution of regeneration 
demands an organ with easy accessibility and diverse regenerative 
capacities. One such mammalian organ is the ear pinna, which 
evolved to funnel sound from the surrounding environment for 
better distinguishing between ambient noise and predators or 
prey. The ear pinna possesses complex tissues such as skin and 
cartilage and exhibits remarkable diversity in the ability to 
regenerate full-thickness holes punched through this organ in 
placental mammals.

RESULTS: By performing a side-by-side comparison between 
regenerative species (rabbits, goats, and African spiny mice) and 
nonregenerative species (mice and rats), we found that the failure of 
regeneration in mice and rats was not due to the breakdown of 
tissue-loss triggered blastema formation and proliferation. Single-
cell RNA sequencing and spatial transcriptomic analyses of rabbits 
and mice identified the response of wound-induced fibroblasts 
(WIFs) as a key difference between the regenerating and 

nonregenerating ear pinna. Gene overexpression studies discovered 
that Aldehyde Dehydrogenase 1 Family Member A2 (Aldh1a2), 
encoding a rate-limiting enzyme for the synthesis of retinoic acid 
(RA) from retinaldehyde, was sufficient to rescue mouse ear pinna 
regeneration. The activation of Aldh1a2 upon injury was correlated 
with the regenerative capacity of the tested species. Furthermore, 
we demonstrated that the deficiency of Aldh1a2 expression, together 
with the augmented activity of the RA degradation pathway, 
contributed to insufficient RA production after injury and eventually 
the failure of regeneration. An exogenous supplement of RA—but 
not the synthetic precursor retinol—was sufficient to induce 
regeneration by directing WIFs to form new ear pinna tissues. The 
inactivation of multiple Aldh1a2-linked regulatory elements 
accounted for the injury-dependent deficiency of Aldh1a2 in mice 
and rats. Importantly, activation of Aldh1a2 driven by a single rabbit 
enhancer was sufficient to promote ear pinna regeneration in 
transgenic mice. 

CONCLUSION: Our study identified a direct target involved in the 
evolution of regeneration and provided a potential framework for 
dissecting mechanisms underpinning the failure of regeneration  
in other organs or species. RA signaling is broadly involved in 
different contexts of regeneration including bone, limb, skin, nerve, 
and lung regeneration. The crosstalk between the RA pathway  
and the crucial regeneration regulator, AP-1 complex, further 
highlights the impact of RA deficiency on regeneration in some 
lineages. We propose that modulation of the RA pathway may be a 
hot spot for the evolution of regeneration in vertebrates. 
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Evolution of regeneration in mammals.  
In regenerative rabbits, the Aldh1a2-linked 
enhancers interact with the promoter to 
activate robust expression of Aldh1a2 upon ear 
pinna injury. The activities of such enhancers 
were lost in mice and rats during evolution, 
resulting in the deficiency of Aldh1a2 expression 
and insufficient production of retinoic acid  
(RA) in these animals. The low RA signaling 
activities limited the morphogenic potential of 
WIFs and resulted in failure to regenerate, but 
switching on Aldh1a2 or an exogenous 
supplement of RA was sufficient to reactivate 
regeneration.
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Reactivation of mammalian 
regeneration by turning on an 
evolutionarily disabled 
genetic switch
Weifeng Lin1,2†, Xiaohui Jia1,3†, Xiaofeng Shi4†, Qiuya He5†,  
Panyu Zhang4†, Xianglei Zhang1,2, Liping Zhang1,2, Mingqi Wu1,2, 
Tengfei Ren1,2, Yufei Liu1, Haohao Deng4, Yanyao Li1,6, Shiqi Liu1,6, 
Shaoyong Huang4, Jingmin Kang4, Jun Luo5*, Ziqing Deng4*,  
Wei Wang1,2*

Mammals display prominent diversity in the ability to 
regenerate damaged ear pinna, but the genetic changes 
underlying the failure of regeneration remain elusive. We 
performed comparative single-cell and spatial transcriptomic 
analyses of rabbits and mice recovering from pinna damage. 
Insufficient retinoic acid (RA) production, caused by the 
deficiency of rate-limiting enzyme Aldh1a2 and boosted RA 
degradation, was responsible for the failure of mouse pinna 
regeneration. Switching on Aldh1a2 or RA supplementation 
reactivated regeneration. Evolutionary inactivation of multiple 
Aldh1a2-linked regulatory elements accounted for the deficient 
Aldh1a2 expression upon injury in mice and rats. Furthermore, 
the activation of Aldh1a2 by a single rabbit enhancer was 
sufficient to improve ear pinna regeneration in transgenic mice. 
Our study identified a genetic switch involved in the evolution of 
regeneration.

Mammals, including humans, possess limited regenerative capacities 
for many tissues and organs (1, 2). In humans, traumatic injury to 
the brain, spinal cord, heart, or limbs leads to impaired or complete 
loss of organ functions. By contrast, such damage can be fully recov-
ered by regeneration in teleost fish and salamanders (3, 4). Various 
approaches have been evaluated to stimulate regeneration in nonre-
generating organs, including stem cell therapy (5–7), tissue engineer-
ing (8), forced expression of proregenerative genes (9–12), electrical 
stimulation (13, 14), and neuron transplantation (15–17). These ap-
proaches highlight the possibility of reactivating regeneration in 
mammals with limited regenerative capacities. However, a complete 
rescue of organ regeneration has not been achieved, presumably 
owing to the complexity of mammalian organs, side effects of gene 
ectopic expression or inhibition, and lack of information on the link-
age between the failure of regeneration and the genetic changes in 
the genome. Understanding what has occurred during evolution to 
induce the loss or gain of regeneration could provide valuable targets 
for regenerative medicine.

The identification of causal evolutionary changes associated with 
regenerative capacities is complicated by the presence of a huge phy-
logenetic distance between highly regenerative organisms (usually 
lower vertebrates) and mammals. In theory, a mammalian organ with 

universality, easy accessibility, and diverse regenerative capacities is 
suitable for exploring the principles in the evolution of regeneration. 
One such organ is the ear pinna (the outer ear), a mammal-specific 
trait that evolved around 160 million years ago to funnel sound from 
the surrounding environment into the inner ear (18). The ear pinna 
consists of complex tissues, such as skin, cartilage, muscles, peripheral 
nerves, and blood vessels, and displays prominent diversity in the 
ability to regenerate full-thickness holes punched through the organ 
(19–21). Among the extant mammals, monotremes—including the 
platypus—lack a visible ear pinna whereas marsupials are incapable 
of ear pinna regeneration (22, 23). The placentals encompass most 
mammalian species and exhibit a complex distribution of animals 
capable and incapable of regeneration in different clades (Fig. 1A). 
Rabbits, African spiny mice (Acomys), and brush-furred mice are 
representative animals that can completely restore damage through 
regeneration (24–26). Nevertheless, some rodents including mice, 
rats, guinea pigs, hamsters, and gerbils fail to close punched ear 
holes (21, 22, 26, 27).

Previous studies in rabbits, Acomys, and the super-healing MRL 
mouse strain suggested that the production of reactive oxygen species, 
extracellular signal–regulated kinase activities, and myofibroblast fate 
are altered in nonregenerating mice (28–38). Loss of function of a cell-
cycle regulator p21, inhibition of apoptosis signal-regulated kinase-1, or 
stabilization of hypoxia-inducible factor 1α can promote ear pinna re-
generation in mice (33, 34, 39). However, the genetic changes respon-
sible for the failure of regeneration during evolution are unknown. Here, 
we report a comparative study that involves rabbits, goats, Acomys, 
mice, and rats to characterize the molecular differences between regen-
eration and tissue repair.

Identification of regeneration-associated genes upon ear 
pinna injury
Despite the variation in morphology and size, the ear pinnae of 
different placental mammals possess similar cell types and func-
tions. We compared the regenerative (rabbits, Acomys, and goats) 
and nonregenerative (mice and rats) species in two major clades 
(light purple) constituting the majority of placental animals (Fig. 1A 
and fig. S1). Rabbits could fill the full-thickness holes within 30 days 
post injury (dpi) and completely restore lost tissues, including the 
cartilage, at 90 dpi (Fig. 1, B to D). This process requires the for-
mation of a blastema, an injury-induced heterogeneous cell mass 
that prepares cells to regenerate new tissues (27, 40). By contrast, 
mice failed to close the holes (Fig. 1, C and D). However, we con-
sistently observed a tiny piece of new cartilage at 90 dpi (Fig. 1D) 
and no enrichment of collagen deposition at the wounding site 
compared with the uninjured regions at both early and late stages 
(Fig. 1E and fig. S2A), implying that extremely weak regeneration 
occurred in mice.

Similar to rabbits and goats, we detected a blastema-like tissue be-
tween 5 and 10 dpi in mice and rats after the completion of reepithe-
lization, as indicated by the presence of Krt14-negative mesenchymal 
cells above the amputation plane (fig. S2, B to E). Robust cell prolifera-
tive response occurred in both regenerating and nonregenerating ani-
mals (Fig. 1, F and G, and fig. S3, A to C). Although the percentage of 
proliferating cells displayed a continuous drop at later stages of injury 
in rabbits and mice, the latter underwent a much stronger reduction 
in the mesenchymal region between 10 and 30 dpi (Fig. 1G). In addi-
tion, mice exhibited a relatively higher level of apoptosis than rabbits 
at 30 dpi (fig. S3, D and G). To determine whether the blastema-like 
tissue is indeed a blastema, we generated transcriptomes for tissues 
derived from regenerating and nonregenerating animals. Despite the 
differences in repairing ear pinna damage, the morphology of the 
newly formed tissues at early stages was comparable across different 
species when 2-mm ear holes were punched in mice and rats and 4-mm 
ear holes were punched in rabbits and goats (fig. S2, B to E). Thus, 
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Fig. 1.  Evolutionary diversity of injury response upon ear pinna damage in mammals. (A) Phylogenetic tree showing the diversity of ear pinna regeneration in mammals. 
Green and dark gray dots indicate regenerative species and nonregenerative species, respectively. Data are not available for humans. Numbers represent the predicted 
divergence time (million years ago). (B) Scheme of ear pinna injury, sample collection, and cryosection. (C) Rabbits could regenerate a 4-mm ear hole within 30 days post injury 
(dpi) whereas mice failed to close a 2-mm ear hole. Scale bar, 4 mm. n = 10 animals. (D) Alcian blue staining on rabbit and mouse ear pinna sections at 90 dpi. Arrowheads 
indicate the new cartilage formed at the amputation site (dashed line). n = 6. Scale bar, 500 μm. (E) Detection of collagen deposition (blue) using Masson’s trichrome staining 
on rabbit and mouse ear-pinna sections at 10 dpi. Stars indicate cartilage. n = 6. (F) Cell proliferative response detected by anti-MKI67 (red) antibody at 10 dpi and 30 dpi in 
rabbits and mice, respectively. The white rectangle highlights the zoomed-in region on each section (right). All images are shown as proximal to the left and distal to the right. 
The yellow dashed line indicates cartilage. Scale bar, 100 μm. (G) The dynamic change of proliferation index at 10 dpi, 15 dpi, and 30 dpi at the wounding site in rabbits and mice. 
All cells indicate the total number of mesenchymal and epidermal cells above the amputation plane. **P < 0.01 (Student’s t-test). (H) Expression of a known blastema-
associated gene Wnt5a in regenerative species and nonregenerative species at 10 dpi. The in-situ hybridization validated that Wnt5a was activated in the blastema in rabbits  
and mice (bottom). n = 6. Scale bar, 250 μm. (I) Heatmap showing the expression of one-to-one conserved IRGs in different species. The box plot at the bottom displays the 
average expression levels for up- and down-regulated genes of each species. ***P < 0.001 (Wilcoxon tests). (J) GO terms enriched for IRGs that were activated in regenerating 
rabbits but not in nonregenerating mice upon ear pinna damage.
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we focused on the 0, 5, and 10 dpi for comparative studies (fig. S4, 
A and B, and table S1). Combined with the publicly available data from 
Acomys (20), conserved blastema genes including Wnt5a, Fstl1, and 
Tgfb3 (2, 41) were all up-regulated in the tested species regardless of 
regenerative capacity (Fig. 1H and fig. S4C). For instance, Wnt5a, a 
gene activated in the tail blastema of fish and amphibians, was ro-
bustly detected in an equivalent domain at the wounding site in rab-
bits and mice (Fig. 1H). Thus, the failure of ear pinna regeneration in 
mice and rats was not due to the breakdown of blastema formation 
and proliferation at early stages.

To characterize the early injury response among different species, 
we identified the one-to-one conserved injury-responsive genes (IRGs) 
that were significantly changed (log2FC > 0.75 or < −0.75, FDR < 0.05) 
in at least one tested species (table S2). The clustering analysis showed 
that the early response in Acomys was closely clustered with mice and 
rats, but not rabbits and goats. We noted that rabbits and goats acti-
vated a relatively stronger response of gene expression (both up- and 
down-regulated) than the other three species (Fig. 1I). Because only a 
small percentage of IRGs were commonly activated in the three regen-
erative species, it is challenging to understand what biological pro-
cesses were altered in nonregenerative species using multiple-species 
analyses. To overcome this issue, we compared the IRGs activated in 
mice or rats with those in rabbits to identify differential IRGs that 
were only present during regeneration. Taking the mouse-rabbit com-
parison as an example, the analysis uncovered 469 rabbit-enriched 
IRGs that were missing in mice (table S2). We define the IRGs only 
triggered during regeneration as regeneration-associated genes 
(RAGs). Gene ontology (GO) analysis showed that the representative 
GO terms enriched for the RAGs were “skeletal system morphogenesis” 
and “mesenchyme development” (Fig. 1J and fig. S4, D to E). Thus, ear 
pinna damage in nonregenerative animals successfully activated IRGs 
essential for blastema formation and proliferation but insufficiently 
activated RAGs involved in tissue morphogenesis.

Wound-induced fibroblasts are the primary cell source for the 
expression of RAGs
To investigate the cell response upon injury and determine what cells 
mainly deploy the RAGs, we carried out single-cell RNA-seq (scRNA-seq) 
at 0, 5, and 10 dpi in rabbits and mice. Unsupervised analyses un-
veiled 21 clusters from 32,557 cells in rabbits (Fig. 2A and fig. S5) and 
26 clusters from 32,469 cells in mice (Fig. 2B and fig. S6). An inte-
grated analysis of the two datasets confirmed the shared major cell 
types including keratinocytes, fibroblasts, muscle cells, chondrocytes, 
and macrophages (fig. S7A). Next, we analyzed the RAGs and found 
that they were mainly expressed in a subpopulation of fibroblasts that 
appeared only after tissue damage (Fig. 2C). These wound-induced 
fibroblasts (WIFs) were present in both species (fig. S5D and S6D). 
An independent clustering of all fibroblasts unveiled 10 subpopula-
tions (RF0-9) in rabbits and 6 subpopulations (MF0-5) in mice 
(Fig. 2D and fig. S7). The WIFs could be marked and validated by the 
expression of Cr2 (RF1) in rabbits and by Tnn (MF3) in mice (Fig. 2, 
E to G). Furthermore, the RNA velocity analysis showed a distinct di
rection of cell transitions (arrows) for the WIFs in rabbits and mice 
at 10 dpi (Fig. 2H), indicating a differential response of WIFs between 
regeneration and tissue repair.

A side-by-side comparison identified 114 genes that were robustly 
activated in rabbit WIFs but barely detectable in mouse WIFs (table 
S3). This cohort of genes includes multiple known morphogenetic 
factors (Lef1, Bmp2, Fgf18, Scube2, and Pdgfd) that have been previ-
ously suggested to regulate many aspects of development and re-
generation (Fig. 2I and fig. S7H) (42–46). Conversely, we observed 
increased expression of the myofibroblast marker Acta2 (also known 
as α-SMA) in mouse WIFs (Fig. 2I and fig. S7H). The top GO terms 
enriched for these 114 genes were bone development–related biologi-
cal processes (fig. S7I), which was consistent with the analysis of 

RAGs (Fig. 1J). In addition to genes linked to the known pathways 
involved in ear pinna regeneration, we identified many potential reg
ulators with unknown functions, such as Fads3, Nes, Sncaip, St3gal5, 
and Znf827 (fig. S7J). In sum, our data suggested that WIFs were the 
primary cell type that deployed the RAGs during regeneration and 
highlighted the differential molecular response between regenerating 
and nonregenerating WIFs.

The microenvironment of WIFs is altered in tissue repair
To validate the molecular differences between the two distinct types 
of WIFs and investigate the spatial response of the scRNA-seq-
identified cell populations, we performed spatially resolved transcrip-
tomic analyses using Stereo-seq in rabbits and mice. Cryosections with 
10-μm thickness that approximately contained a single-cell layer of ear 
pinna tissue were collected for analysis at 0, 5, and 10 dpi (fig. S8 to 
S10). Using the Louvain algorithm, we obtained eight and seven major 
cell clusters that spatially mapped onto the DAPI-stained anatomical 
regions of each sequenced section for rabbits and mice, respectively 
(Fig. 3, A and B). By combining the unsupervised clustering analysis 
based exclusively on gene expression and marker genes established by 
scRNA-seq, we determined the primary cell types (keratinocytes, fibro-
blasts, chondrocytes, muscle cells, and immune cells) and annotated 
the subclusters of fibroblasts (Fig. 3, A and B). The spatial distribution 
of signals was further validated through the known marker genes 
including Wnt5a, Krt5, Cr2, and Tnn (Fig. 3C and figs. S9E and S10E). 
In line with the Cr2 and Tnn expression (Fig. 2G), WIFs were mapped 
into the blastemal region at the distal mesenchyme for both species 
(Fig. 3, A and B). Considering that the blastema is defined as maintain-
ing the highest developmental potential in a regenerating organ, we 
performed CytoTRACE analyses to validate the data further (47). As 
expected, less-differentiated cells with high CytoTRACE scores (red) 
were localized in the blastema, indicating relatively high quality of our 
Stereo-seq data (Fig. 3D). Using the chondrocytes of each species as 
an internal control, the significant difference (P < 0.001) between the 
two normalized scores suggested that rabbit blastema tended to have 
a relatively higher developmental potential than the mouse blastema 
(Fig. 3D), which was consistent with the deficiency of critical morpho-
genetic factors in mice (Fig. 2I).

Efficient regenerative outgrowth is intricately linked with cross-talk 
among blastema cells, neighboring cells, and the extracellular matrix 
(ECM). The regenerating blastema cells control their own proliferation 
and differentiation by communicating with neighboring cells, includ-
ing epidermal cells, immune cells, and other cell types within the 
microenvironment. To understand the major differences in blastema 
microenvironment between mice and rabbits, we first examined the 
expression of ECM genes. The results revealed significant (P < 0.001) 
alterations of multiple known regeneration-related ECM genes includ-
ing Mmp9 (48), Mmp13 (49), Efemp1 (50), and Col15a1 (51) in mice (fig. 
S11, A and B). Furthermore, we carried out ligand-to-target signaling 
analyses between the WIFs (receiver) and neighboring cells (senders) 
at 10 dpi using the NicheNet program (52). In rabbits, we found that 
the top ligands exerting robust activities on the WIFs were Npnt from 
keratinocytes and Bmp2 and Bmp5 from the muscle cells (fig. S11C). 
These three genes are known regulators of bone morphogenesis 
(44, 53, 54). By contrast, the top ligands received by the mouse WIFs 
were Il1b and Tnf from the neutrophils. As a result, a different set of 
predicted target genes was activated in mouse WIFs compared with 
rabbit WIFs (fig. S11C), suggesting that mice activated an altered mi-
croenvironment for WIFs.

Next, we sought to identify the potential major effectors respon-
sible for the failure of regeneration in mice. The Stereo-seq data vali-
dated 56 genes with major changes in the spatial pattern between 
rabbit and mouse WIFs (table S3). For example, the expression of 
Scube2 and Srfbp1 was robustly detected in rabbit WIFs but barely 
detectable in mouse WIFs (Fig. 3E). Increasing evidence suggests 
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that regeneration in different systems and organisms repeatedly de-
ploys conserved genes and signaling pathways involved in funda-
mental processes such as proliferation and morphogenesis (55). To 
identify commonly activated genes in animals with high regenerative 
potential, the 56 genes were examined in previously published 
scRNA-seq datasets for zebrafish caudal fin regeneration and axolotl 

limb regeneration (2, 56). The majority of the genes were only de-
tected in one type of blastema, because of either species specificity 
or the sensitivity of scRNA-seq. Notably, we found that activation of 
nine genes, including Wnt11, St3gal5, Srfbp1, Sncaip, Pdgfd, Mmp13, 
Epha7, Plcl2, and Aldh1a2, was commonly observed in the highly 
regenerative blastema, implying potential pivotal roles of these genes 
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during regeneration (Fig. 3F and fig. S12). Collectively, the spatial 
transcriptomics data combined with scRNA-seq data revealed an 
altered microenvironment for WIFs activated during tissue repair 
and identified the candidates of potential effectors determining re-
generation versus tissue repair.

Insufficient production of retinoic acid is a causative 
mechanism for the failure of ear pinna regeneration
To determine the functional significance of the potential effectors in 
the failure of regeneration, we conducted adeno-associated virus 
(AAV)-based gene overexpression studies during mouse ear pinna 
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injury. A comparison of 14 different AAV serotypes revealed that 
AAV7, AAV8, AAV9, and AAV PHP.S were suitable for delivering genes 
of interest to the mesenchyme of uninjured ear pinna (fig. S13, A to 
E). However, regular AAVs failed to deliver stable expression of target 
genes in the rapidly proliferating mesenchyme after injury (fig. S13F). 
To address this problem, we used a transposase-mediated somatic 
integration for obtaining stable expression (fig. S13G and Fig. 4A). 
With this system, we identified two genes that could significantly 
promote mouse ear pinna regeneration (fig. S14A-B; FDR < 0.001): 
Serum Response Factor Binding Protein 1 (Srfbp1) and Aldehyde 
Dehydrogenase 1 Family Member A2 (Aldh1a2). Transcriptomic analy-
sis showed that the functional effect of Srfbp1 may be related to the 
enhanced expression of Fgf9 and Inhba (fig. S14C), two known factors 
involved in regeneration (2, 57, 58). Unlike the partial rescue of re-
generation for Srfbp1, the gene Aldh1a2, encoding a rate-limiting 
enzyme in the synthesis of retinoic acid (RA) from retinaldehyde, 
was sufficient to fully restore ear pinna regeneration (Fig. 4B and 
fig. S14D). The cellular level of RA is tightly regulated through the 
balance between its production by synthesizing enzymes (Aldh1a1, 
Aldh1a2, and Aldh1a3) and degradation by the cytochrome P450 en-
zymes (Cyp26a1, Cyp26b1, and Cyp26c1) in vertebrates (59). The ex-
pression of Aldh1a2 in rabbits was robustly activated after injury and 
maintained throughout regeneration, with higher expression in the 
mesenchyme than in the epidermis (Fig. 4C and fig. S14, E to H). By 
contrast, Aldh1a2 expression was barely detectable throughout tissue 
repair in mice (Fig. 4D and fig. S14I). Similarly, we observed signifi-
cant up-regulation of Aldh1a2 in other regenerative species and sig-
nificant down-regulation in nonregenerating rats (Fig. 4D). In terms 
of the degradation enzymes, we performed RNAscope in situ hybrid-
ization analysis for Cyp26a1 and Cyp26b1 because Cyp26c1 was not 
expressed in the ear pinna of both species according to the RNA-seq 
data. Indeed, Cyp26a1 was activated at the wounding site in mouse 
ear pinna but barely detectable in rabbits whereas Cyp26b1 was 
detected in both species with expression mainly enriched in the lat-
eral mesenchyme (fig. S14, J and K). Thus, the synthetic pathway for 
RA was suppressed and the degradation pathway boosted during 
injury in mice.

Given that the strong correlation between Aldh1a2 activation and 
regenerative capacity, the ability to fully rescue regeneration and the 
known function of the RA pathway in the regulation of organ develop-
ment and regeneration in various systems (60–64), we propose that 
insufficient production of RA is responsible for the failure of ear pinna 
regeneration during evolution. If true, supplementation of exogenous 
RA should be sufficient to reactivate regeneration. Thus, we conducted 
a series of intraperitoneal injections of RA, retinol (the synthetic pre-
cursor of RA), talarozole (TLZ, a Cyp26 inhibitor), and DMSO (control) 
in mice using a dosage without visible side effects (fig. S15, A and B). 
As predicted, animals with the exogenous delivery of RA (FDR < 0.001) 
but not retinol and TLZ fully regenerated the ear holes at 30 dpi 
(Fig. 4, E to F). Our results differed from the observation of previous 
studies, in which only coadministration of RA and zebularine (a DNA 
methyltransferase inhibitor) nearly closed the ear hole whereas RA or 
zebularine alone could not (30, 32). Such discrepancy is likely due to 
the short elimination half-life of RA in vivo (65), with continuous 
supplementation of RA required for maintaining its biological activi-
ties. The insufficiency of retinol and TLZ in rescuing regeneration 
confirmed that the RA synthetic pathway was suppressed upon tissue 
damage in mice. In addition, coinjection of RA and TLZ accelerated 
regeneration compared with RA alone, indicating that the degradation 
pathway contributed to final RA levels during tissue repair (Fig. 4F 
and fig. S15A). Activation of RA signaling allowed regeneration of both 
the missing structures such as cartilage and nerves, compared with 
the control (Fig. 4, G to H). To understand when RA signaling activities 
were required after injury, we performed RA injections at three major 
stages: blastema formation (0 to 8 dpi, early), blastemal outgrowth 

(6 to 16 dpi, middle), and tissue morphogenesis (16 to 30 dpi, late). 
Activation of the RA pathway promoted regeneration at all tested 
stages, with a stronger effect during blastema formation and out-
growth (FDR < 0.001, Fig. 4I). Next, we asked whether RA signaling 
was sufficient to rescue rat regeneration and essential for rabbit re-
generation. Similar to mice, intraperitoneal injection of RA completely 
restored the ear holes at 30 dpi in rats (Fig. 4J, P < 0.001). Conversely, 
inhibition of RA synthesis impaired the closure of ear holes in rabbits 
by treating animals with diethylaminobenzaldehyde (DEAB, Fig. 4K 
and fig. S15, C and D; P < 0.001), a potent inhibitor of RA synthesizing 
enzymes (66). Thus, insufficient production of RA, prompted by the 
deficiency of a rate-limiting enzyme Aldh1a2 and the enhanced deg-
radation pathway, was responsible for the failure of ear pinna regen-
eration in mice.

Reactivation of RA signaling triggers a rabbit-like regeneration 
response that directs WIFs to form new ear pinna tissues
Because WIFs are the cell population with the highest developmental 
potential, we asked whether they were the cell source for ear pinna 
regeneration. In the wild-type (WT) mice, the WIF marker gene Tnn 
was barely detectable in intact ear pinna but robustly activated upon 
injury (Fig. 5A and fig. S16A). Nevertheless, the Tnn expression do-
main regressed at later stages of tissue repair and was restricted to 
a small region above the stump of the cartilage, resulting in Tnn-
negative cells dominating the original blastemal region at 30 dpi 
(Fig. 5B). To determine the lineage commitment of the WIFs by the end 
of tissue repair, we generated the Tnn-P2A-Cre-ERT2 mice by insert-
ing the Cre-ERT2 cassette into the endogenous Tnn locus (fig. S16, B 
and C). We then crossed Tnn-P2A-Cre-ERT2 with Ai14 (Rosa-CAG-
LSL-tdTomato) mice to conduct lineage tracing analyses (fig. S16, D 
and E). Intraperitoneal injection of tamoxifen in Tnn-P2A-Cre-
ERT2;Ai14 mice before injury failed to activate the expression of 
tdTomato (fig. S16F). By contrast, the whole mesenchyme above the 
amputation plane expressed tdTomato at 30 dpi when tamoxifen was 
injected after injury (fig. S16F). Thus, the original WIFs did not dis-
appear but rather lost Tnn expression. We repeated the same experi-
ment in RA-treated animals in which regeneration was fully restored. 
As a result, all the regenerated mesenchymal tissues were tdTomato-
positive, denoting that they were derived from the WIFs (Fig. 5C). 
Furthermore, we examined which resident cells present during ho-
meostasis contributed to the WIFs. With the hypothesis of cartilage 
contribution, the lineage tracing analysis using Acan-CreERT2;Ai14 
uncovered that Acan+ chondrocytes were a crucial source for WIFs, 
although not the only one (fig. S16G).

To investigate the mechanisms underlying RA-dependent regen-
eration, we conducted scRNA-seq on RA-treated and DMSO-treated 
(control) animals at 15 dpi, the point at which the two groups started 
to differ in ear hole size. Unsupervised analyses of 26,764 cells de-
rived from the control and 28,753 cells from RA-treated mice uncov-
ered all major cell types identified at early stages (Fig. 5, D and E, 
and Fig. 2B). As expected, RA treatment significantly promoted the 
expression of RA receptors (Rara and Rarg) and RA-responsive genes 
(Rai14 and Rbp1) in WIFs and other cell clusters (fig. S16H). The 
activation of RA signaling neither induced a new cell population nor 
eliminated an existing population (Fig. 5D and fig. S16I). However, 
RNA velocity analysis of all mesenchymal cells implied that there 
was an enhanced cell state transition from WIFs and Mmp3+ cells 
(cluster 4) to Angptl7+ cells (cluster 3) and a transition from Mmp3+ 
cells to Coch+ cells (cluster 6) in RA-treated animals (Fig. 5F). The 
large interspecies difference makes it challenging to directly compare 
the similarity between rabbit regeneration and RA-induced regenera-
tion using correlation analysis or principal component analysis. 
However, RA-induced mouse regeneration promoted the expression 
of many (40 out of 114) rabbit-enriched WIF genes in mouse WIFs 
including Bmp2 (fig. S17A), a crucial factor required for chondrocyte 
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proliferation and differentiation. Activation of Bmp2 using AAV re-
duced the ear hole size in mice (Fig. 5G and fig. S17, B and C). As seen 
in rabbits, we observed a significant reduction in the expression of 
myofibroblasts marker Acta2 in RA-treated mice (Fig. 5H, Fig. 2I, 
and fig. S7H). We also found the expression of Keratin-17—a gene with 
sustained activation in regenerating epidermis wounds in rabbits 

(fig. S17D) and in African spiny mice but not nonregenerating mice 
(25)—was significantly (P < 0.01) boosted in RA-treated animals 
(fig. S17E). Furthermore, we examined the average expression of a 
collection of known RA-responsive genes (table S3) to understand 
the strength of the RA response upon injury. Among different clus-
ters, WIFs displayed the most robust RA response in both rabbits 
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and RA-treated mice (Fig. 5I). Our data suggest that activation of the 
RA pathway transformed the nonregenerating response into a rabbit-
like response and directed WIFs to form new tissues.

RA signaling promotes the transcriptional activity of the AP-1 
complex during regeneration
To understand the genome-wide transcriptional changes upon the 
reactivation of RA signaling, we collected the tissues at the wounding 
site during blastema formation at 15 dpi and profiled the chromatin 
accessibility using assay for transposase-accessible chromatin sequenc-
ing (ATAC-seq). Our analyses unveiled 2376 up-regulated and 1592 
down-regulated peaks compared with the control (Fig. 5J and table S4). 
The motif enrichment analysis for these RA-induced peaks identified 
the Activator protein 1 (AP-1), TP63, TP53, Bach2, and the binding 
motifs of the nuclear retinoic acid receptors (RXR-RAR) as the most 
enriched ones (Fig. 5K). The enrichment of RXR-RAR motifs validated 
the biological effect of RA. The AP-1 complex, a heterodimer composed 
of Jun, Fos, Maf, and ATF family proteins, is essential for the activation 
of regeneration-responsive enhancers and regeneration in teleost fish, 
which possesses remarkable regenerative capacities (2, 67). It has been 
shown that the DNA-binding capacity and stability of this complex are 
regulated through post-translational phosphorylation (68). A side-by-
side comparison between the control and RA-treated animals using 
the phospho-c-Jun (Ser73) antibody showed that the activation of RA 
signaling augmented Jun phosphorylation (Fig. 5L). Unlike previously 
identified negative regulation of AP-1 activation in cancer cell lines 
(69, 70), our data highlight a function of RA signaling in promoting 
AP-1 activity during tissue regeneration.

Mice lack regulatory elements responsible for the activation  
of Aldh1a2 upon ear pinna injury
The transcriptional activation of gene expression is usually achieved 
through cis-regulatory modules such as enhancers and promoters, 
which control when and where transcription occurs (71, 72). To de-
termine how the expression of Aldh1a2 fails to be activated during 
mice ear pinna injury, we assayed H3K4me3 and H3K27ac enrich-
ment at 0 and 10 dpi in mouse and rabbit genomes to identify active 
promoters and enhancers, respectively. Our results uncovered 786 
injury-induced enhancers that did not overlap with the promoters 
in mice, whereas this number increased to 2628 in rabbits (fig. S18A). 
In accord with the expression of Aldh1a2 in each species (Fig. 4, C and 
D), we detected significant up-regulation of H3K4me3 and H3K27ac 
peaks at the rabbit Aldh1a2 promoter (Rb-Apr) region but down-
regulation at the mouse Aldh1a2 promoter (M-Apr) region (Fig. 6, A 
and B). Meanwhile, we identified six active enhancers (AE1-AE6), as 
defined by the H3K27ac peaks, at rabbit Aldh1a2 locus, with AE1 and 
AE5 being regeneration-responsive (Fig. 6A). By contrast, only one 
active enhancer was found in mice, with activities mainly detected 
during homeostasis (Fig. 6B). The Aldh1a2 protein is highly con-
served in mammals and this gene locus shares a conserved synteny 
in rabbits, mice, and rats (fig. S18B and Fig. 6, A and B). A genomic 
comparison of the rabbit, mouse, and rat Aldh1a2 locus using the VISTA 
alignment tool suggested that the orthologous regions of AE1-AE6 
were present in mouse and rat genomes (fig. S18C). However, the reg
ulatory activities of these orthologous regions, except the AE3, were lost 
in mouse ear pinna (Fig. 6B).

Next, we created a high-resolution view of 3D genome organization 
for rabbit blastema to validate enhancer-dependent Aldh1a2 regulation 
using Micro-C (73). Our data revealed complex chromatin folding dur-
ing ear pinna regeneration, including topologically associated domains 
(TADs) and enhancer-promoter or promoter-promoter interactions 
(Fig. 6C and fig. S19). For instance, highly nested 3D interactions were 
captured in a TAD with genes involved in fundamental biological pro-
cesses including DNA repair (Nhej1), protein folding (Dnajb2), and 
secretory vesicles (Ptprn) (fig. S19B). Our analysis also identified many 

additional enhancer-promoter and promoter-promoter interactions 
for the WIF-associated genes such as Sfrbp1, Sncaip, Nes, Wnt11, Lef1, 
and Wnt5a (fig. S19, C to G), supporting relatively high quality of the 
data. Next, we employed the Micro-C, H3K27ac ChIP-seq, and ATAC-
seq data to dissect the chromatin interactions at the rabbit Aldh1a2 
locus. The analysis displayed intricate physical chromatin contacts 
(arrowheads) including promoter-enhancer interactions (Rb-Apr-AE1 
and Rb-Apr-AE4) and other interactions with unknown functions 
(Fig. 6D). Unlike AE1, AE4 also interacted with an undefined open 
chromatin region (star) in addition to the Rb-Apr. We failed to detect 
direct chromatin contacts between the second regenerative-responsive 
enhancer AE5 and the Rb-Apr, which implied that AE5 either did not 
regulate Aldh1a2 or interacted weakly with other unknown elements 
within this locus. Thus, the robust activation of Aldh1a2 expression 
upon tissue damage in rabbits was under control of distinct regulatory 
elements (Rb-Apr, AE1, AE4, and undefined elements), whereas the 
activities of these elements were barely detected in mice.

A single rabbit enhancer is sufficient to promote ear pinna 
regeneration in transgenic mice
To validate the activities of the identified promoters and enhancers 
experimentally, we took Rb-Apr, M-Apr, and AE1 as examples to con-
duct transgenic reporter assays by inserting each reporter cassette into 
the mouse Rosa26 locus (fig. S20). Consistent with the H3K4me3 ChIP-
seq and RNA-seq data, the expression of green fluorescent protein 
(GFP) driven by Rb-Apr was much stronger than M-Apr in homeostatic 
and injured ear pinna (Fig. 6, E and F, and fig. S20D). Nonetheless, 
both Rb-Apr and M-Apr could direct reporter gene expression in the 
testis, indicating that the diminished regulatory activity in the ear pinna 
for M-Apr was not due to the positional effect of the Rosa26 locus (fig. 
S20E). The GFP expression driven by AE1 was detected in both epi-
thelial cells and mesenchymal cells after tissue damage, with relatively 
stronger expression in the epidermis (Fig. 6G). Unexpectedly, we ob-
served broad homeostatic enhancer activities of AE1 in various organs 
including lungs, brains, kidneys, and intestines (fig. S21A). The mul-
tiple alignments of 60 vertebrate species showed that AE1 contains an 
ancient regulatory module with sequence conservation across different 
mammals including the platypus (fig. S21B), indicating the pleiotropic 
functions and deep evolutionary origin of this enhancer. Among the 
tested promoters and enhancers, we did not observe a robust blastemal 
enrichment of GFP expression resembling the endogenous Aldh1a2 
expression in rabbits (Fig. 4C). Our data confirmed the regulatory activi
ties for the identified elements and suggested that the precise Aldh1a2 
expression likely requires the involvement of all regulatory inputs 
identified in Micro-C.

Because of the sufficiency of RA signaling in rescuing rat ear pinna 
regeneration and the substantial reduction in Aldh1a2 expression upon 
injury (Fig. 4J and Fig. 6H), we asked whether loss of regulatory activi-
ties for Aldh1a2-linked enhancers also occurred in rats. ATAC-seq was 
performed to profile open chromatin regions associated with rat ear 
pinna at 0 and 10 dpi. No injury-activated open chromatin regions 
were present at 10 dpi compared with intact tissues (Fig. 6H), sup-
porting that the activities of orthologous enhancers responsible for 
the injury-dependent activation of Aldh1a2 were absent in rat ear 
pinna. Next, we hypothesized that if the loss of activities of regulatory 
elements (promoter and enhancers) is the major mechanism underly-
ing the deficiency of Aldh1a2 expression upon injury in mice and rats, 
transgenic animals carrying all rabbit Aldh1a2-linked regulatory ele-
ments should be able to promote regeneration in these animals. 
Ideally, transgenic mice with the whole rabbit Aldh1a2 locus should 
achieve an accurate spatial-temporal enzyme expression with proper 
intensity after injury. However, the appropriate 460-kilobase size of 
the locus makes it challenging to test. Alternatively, we can test 
the ability of individual elements (promoter or enhancer) to stimulate 
ear pinna regeneration. Because a single element cannot confer full 
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Fig. 6.  Evolutionary inactivation of regulatory modules mediated the suppression of Aldh1a2 in mice. (A and B) Identification of active enhancers and promoters at the 
Aldh1a2 locus in rabbits (A) and mice (B). (C) Heatmap showing Micro-C robustly captured the chromatin interactions at 10 dpi in rabbits. The heatmap was plotted using the 
Micro-C interaction maps (binned at 100 kb resolution) for chromosome 17 where Aldh1a2 is located. (D) Micro-C captured enhancer-promoter interactions at the Aldh1a2 locus 
at 10 dpi in rabbits. Arrowheads indicate the chromatin interactions; purple arrowheads mark the contacts between Rb-Apr and AE1/AE4. Stars highlight the undefined elements 
that interact with Rb-Apr. (E) A 4-kb rabbit Aldh1a2 promoter (Rb-Apr) was sufficient to drive GFP expression during homeostasis and injury in transgenic mice. GFP was 
visualized using an anti-GFP antibody. (F) The expression of GFP driven by a 4-kb mouse Aldh1a2 promoter (M-Apr) was barely detectable in transgenic mice. ***P < 0.001 
(Student’s t-test). (G) The rabbit AE1 enhancer was sufficient to drive GFP expression during homeostasis and injury in transgenic mice. Scale bar, 100 μm. (H) ATAC-seq failed 
to detect injury-activated open chromatin regions upon rat ear pinna injury. The transcription of Aldh1a2 was diminished after injury (bottom). 1 and 2, two open chromatin 
regions present during homeostasis. R-Apr, rat Aldh1a2 promoter. The region that contains the AE1-AE6 orthologous sequence (black line) is not accessible in rats. (I) The 
AprRb-Aldh1a2M (promoter swap) transgenic mice displayed reduced ear hole size at 30 dpi compared with the control. n = 6. P = 0.062 (Student’s t-test). (J) Forced expression 
of Aldh1a2 driven by the rabbit AE1 enhancer significantly promoted ear pinna regeneration in AE1-Aldh1a2 mice compared with the control. n = 6. **P < 0.01 (Student’s t-test). 
Scale bar, 4 mm. (K) A working model showing the mechanism responsible for the failure of ear pinna regeneration in mice and rats during evolution.
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control of the enzyme expression, it is unlikely that we would observe 
a complete rescue of ear pinna regeneration but some improvement 
in regeneration should be possible. To test this idea, we generated 
transgenic mice to swap the endogenous mouse Aldh1a2 promoter 
with the rabbit promoter (AprRb-Aldh1a2M) and to reactivate the ex-
pression of Aldh1a2 after injury using the rabbit AE1 (AE1-Aldh1a2, 
fig.  S20, G to I), respectively. Compared with the control, AprRb-
Aldh1a2M mice seemed to display reduced ear hole size at 30 dpi, al-
though no statistical significance was observed (P = 0.062, Fig. 6I). 
However, the rabbit AE1 was sufficient to significantly (P < 0.01) im-
prove the ear pinna regeneration in AE1-Aldh1a2 mice (Fig. 6J). The 
insufficiency of AE1 alone in fully rescuing regeneration confirms that 
other elements are also required for the precise control of the spatial-
temporal enzyme expression with proper intensity. Consistent with 
the extent of regeneration, we observed distinct expression levels of 
Aldh1a2 in gene-rescue experiments in descending order as AAV-
Aldh1a2, AE1-Aldh1a2, and AprRb-Aldh1a2M (fig. S21C). Altogether, our 
data suggest that changes in the Aldh1a2-linked regulatory elements 
contribute to the deficiency of Aldh1a2 expression upon injury.

Discussion
As a seemingly beneficial trait, regeneration is maintained in some 
lineages but has been lost in many others during evolution (1). By 
performing comparative studies between regenerative and nonregen-
erative species, we found that the RA pathway is a direct target involved 
in the evolution of mouse and rat ear pinna regeneration (Fig. 6K). 
The deficiency of Aldh1a2 expression, prompted by the loss of activities 
of multiple regulatory elements, leads to insufficient production of RA 
in mice and rats. As a result, these animals form a blastema with an 
altered microenvironment and limited morphogenesis after injury. 
Reactivation of RA signaling could partially transform the mouse in-
jury response into a rabbit-like regeneration response and direct WIFs 
to restore damaged tissues. In addition to the crucial roles in develop-
ment and diseases (60, 74), RA signaling activities are involved in 
various contexts of regeneration including bone, limb, skin, nerve, and 
lung regeneration (61, 62, 75–80). The RA machinery is also found in 
invertebrates. Indeed, the receptor RXR has an ancient evolutionary 
origin and is present in genomes of basal metazoans such as cnidarians 
and sponges (81, 82). The deep conservation and the wide involvement 
of RA signaling in different stages of regeneration imply that modula-
tion of RA production may be a hot spot for the change of regenerative 
capacities during evolution.

The RA precursor, vitamin A, cannot be synthesized de novo by ani-
mals and must be obtained directly from the diet in the form of carot-
enoids or retinyl esters. Unlike most physiological functions controlled 
by its bioactive metabolite RA, animal vision requires the unprocessed 
vitamin A for visual phototransduction (74), which adds an extra layer 
of regulation for the RA pathway. The activities of diurnal, nocturnal, 
and crepuscular animals are largely based on the levels of light. For 
both predators and prey, successful adaptation in a specific environ-
ment usually involves the modulation of structures or performance 
related to hearing and vision, by which tight regulation of the RA 
pathway is required (74, 83). In terms of the ear pinna, distinct sizes, 
positions, and orientations have evolved to assist the brain in sensing 
front, rear, or upper sound sources or to serve additional functions for 
animals living in special environments (84, 85). For example, the en-
larged ear pinnae in rabbits, hares, Townsend’s big-eared bats, and 
the long-eared jerboa provide an efficient way to distinguish between 
ambient noise and the sounds of predators or prey, and serve as a 
critical organ for thermoregulation during hot summers or after en-
ergetic motions (86, 87). Recent evidence also suggests that the acquisi-
tion of endothermy and the metabolic shift from glycolysis to fatty 
acid oxidation contributed to cardiomyocyte cell-cycle arrest in adult 
mammals incapable of heart regeneration (88–90). We propose that the 
emergence of a distinct organ function for environmental adaptation 

is the potential driving force for the evolution of regeneration. Our 
findings may help in increasing understanding of the evolution of 
regeneration and provide a potential framework for dissecting mecha-
nisms underpinning the failure of regeneration in different organs 
and species.

Material and methods summary
Detailed materials and methods can be found in the supplementary 
materials. Briefly, 2-mm and 4-mm full-thickness holes were punched 
through the ear pinna in small mammals (mice and rats) and rela-
tively larger mammals (rabbits and goats), respectively. Samples for 
regeneration or tissue repair at specific time points were collected 
using Biopsy punches with larger diameters (4 mm for mice and rats; 
8 mm for rabbits and goats). Bulk RNA-seq was carried out to identify 
injury-responsive genes. Three biological replicates were prepared 
for each time point. Six adult mice, rats, and rabbits and five adult 
goats were used for each biological replicate. Single-cell RNA-seq was 
conducted to identify cell populations involved in ear pinna regen-
eration and repair. For WT mice and rabbits, the ear hole tissues 
were collected at 0, 5, and 10 dpi while tissue from RA-treated and 
DMSO-treated mice were collected at 15 dpi. The fresh tissues from 
six adult animals were pooled, cut into small pieces, and subjected 
to cell dissociation. The libraries were prepared using the 10X 
Genomics platform. The spatial transcriptomics for rabbit ear pinna 
regeneration and mouse ear pinna repair were conducted using 
Stereo-seq. Fresh ear pinna samples from mice and rabbits (0 dpi, 5 dpi, 
and 10 dpi) were collected, quickly embedded into the optimal cut-
ting temperature compound, and snap-frozen with dry ice. For each 
sample, 10-μm cryosections were collected onto the Stereo-seq chip. 
To identify active promoters and enhancers in rabbits and mice upon 
tissue injury, we carried out H3K4me3 and H3K27ac ChIP-seq, respec-
tively. ATAC-seq was performed in rats to identify injury-activated 
open chromatin regions.

Six transgenic mouse lines including Tnn-P2A-CreERT2, Rb-Apr-GFP, 
M-Apr-GFP, AE1-GFP, AprRb-Aldh1a2M, and AE1-Aldh1a2 were gener-
ated in this study. Specifically, the Tnn-P2A-CreERT2 line was gener-
ated by inserting the P2A-CreERT2 cassette into the final exon of the 
gene Tnn using CRISPR/Cas9-mediated homologous recombination. 
The Rb-Apr-GFP, M-Apr-GFP, and AE1-GFP transgenic reporter mice 
were created by knocking in the expression cassette into the Rosa26 
locus. Two transgenic mouse lines used for the rescue experiments, 
AprRb-Aldh1a2M and AE1-Aldh1a2, were created by swapping the en
dogenous mouse Aldh1a2 promoter with the rabbit promoter and by 
knocking in the AE1-Aldh1a2 expression cassette into the Rosa26 lo-
cus, respectively.
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